Question

Dimensions for beam section (mm)
( B1= 20 ,B2= 40, D=50 ,T1=4 ,T2=6 )
Beam span L (m) =4
Uniform Load w (kN/ m) =8


Q1 The cross-section of a cantilever beam is given in the figure. Determine the maximum value of transverse shear stress if t

i have anly 20 min
0 0
Add a comment Improve this question Transcribed image text
Answer #1

20mm 1 mm Intus 8 kN/m Ι Ι Ι Ι. = 33 Somm .6 mm j 25 14 4mm 4 shear face at the centre support 4or will be maximum wie 8x4 =of moment esestia about centroidal anis con now be colwlated by using pasollel arain the asem. In fe + Aly_g/ INAE 40x4 + hoaAy= AY + A 4084x (2.5+ 4 1. } (25+1) +25000(4) 4320 + 1875 : 61.95 mm3 S= FA F 16 *1000 * 6195 Eb = 72.095 mm2 229140 x 6 max

Add a comment
Know the answer?
Add Answer to:
Dimensions for beam section (mm) ( B1= 20 ,B2= 40, D=50 ,T1=4 ,T2=6 ) Beam span...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. (30%) For a beam with a T-section as shown, the cross-sectional dimensions of 12 mm....

    4. (30%) For a beam with a T-section as shown, the cross-sectional dimensions of 12 mm. The centroid is 75 mm, h = 90 mm, t the beam are b 60 mm, h, at C and c 30 mm. At a certain section of the beam, the bending moment is M 5.4 kN m and the vertical shear force is V= 30 kN. (a) Show that the moment of inertia of the cross-section about the z axis (the neutral axis)...

  • Q1 A simply supported beam of length L = 10 m carries a uniformly distributed load...

    Q1 A simply supported beam of length L = 10 m carries a uniformly distributed load w = of 10 kN/m, as shown in Figure Q1 (a). The beam is made from a I-section and the thickness for all the three rectangular members is of 10 mm. All other dimensions are illustrated in Figure Q1 (b). Self-weight of the beam is neglected. 300 mm w = 10 kN/m 300 mm L/4 L/2 L/4 300 mm Figure Q1 (a) Figure Q1...

  • A wood beam supports the loads shown. The cross-sectional dimensions of the beam are shown in...

    A wood beam supports the loads shown. The cross-sectional dimensions of the beam are shown in the second figure. Assume LAB=2.8 m, LBC=1.1 m, LCD=1.6 m, w=12 kN/m, P=6.8 kN, b1=20 mm, b2=75 mm, d1=100 mm, and dz=240 mm. Determine the magnitude of: (a) the maximum horizontal shear stress Tmax in the beam. (b) the maximum tension bending stress max (and location x) in the beam. - X BI ec LAB I LBCI LCDJ bil b2 bil Answers: kPa. (a)...

  • A simply supported wood beam of rectangular cross section and span length 2 m carries a...

    A simply supported wood beam of rectangular cross section and span length 2 m carries a uniformly distributed load of intensity 9 = 1 kN/m as shown. Calculate the maximum bending stress and the maximum shear stress in the beam. 

  • A simply supported wood beam AB with span length L = 6 m

    A simply supported wood beam AB with span length L = 6 m carries a trapezoidal distributed load of intensity q = 4 kN/m at the left end and q/2 at the right end. Calculate the maximum bending stress Omax due to the load if the beam has a rectangular cross section with width b = 150 mm and height h = 250 mm. 

  • Q1 A cantilever steel beam of length L = 7.5 m carries both a uniformly distributed...

    Q1 A cantilever steel beam of length L = 7.5 m carries both a uniformly distributed load w of 20 kN/m throughout its length and a point load P of 10 kN at its free end, as shown in Figure Q1 (a). The beam is made from a rectangular hollow box section with a width of 300 mm and a depth of 450 mm (refer to Figure Q1 (b)). The wall thickness of the box section is constant throughout which...

  • A 5-m-long simply supported timber beam carries two concentrated loads as shown dimensions of the beam...

    A 5-m-long simply supported timber beam carries two concentrated loads as shown dimensions of the beam are shown a) At section a-a e the magnitude of the shear stress in the beam at point H. -7748 KNIm in the beam at point K the beam, at any location within the 5-m span length. V occurs in the beam at any location within the 5-m span length.)diagr. the magnitude of the shear stress (b) At section a-a, (e) Determine the maximum...

  • A5.2 m long simply supported wood beam carries a uniformly distributed load of 12.9 kN/m, as...

    A5.2 m long simply supported wood beam carries a uniformly distributed load of 12.9 kN/m, as shown in Figure A. The cross-sectional dimensions of the beam as shown in Figure Bare b = 195 mm, d = 485 mm. yy = 81 mm, and yx = 167 mm. Section 3-a is located at x = 1.4 m from B. (a) At section a-a, determine the magnitude of the shear stress in the beam at point H. (b) At section a-3,...

  • QI A cantilever steel beam of length L 7.5 m carries both a uniformly distributed load...

    QI A cantilever steel beam of length L 7.5 m carries both a uniformly distributed load w of 20 kN/m throughout its length and a point load P of 10 kN at its free end, as shown in Figure QI (a). The beam is made from a rectangular hollow box section with a width of 300 mm and a depth of 450 mm (refer to Figure Q1 (b)). The wall thickness of the box section is constant throughout which is...

  • 3. A beam with a hollow circular cross section of outer diameter D and inner diameter...

    3. A beam with a hollow circular cross section of outer diameter D and inner diameter d. The length Lis fixed at a wall. Consider the following loading conditions, all applied to the beam at the midpoint of length L. For each loading scheme state determine the magnitude of that stress in terms of the variables given in the problem). (5 points) i. ii. iii. iv. V. Normal stress due to axial load F Shear stress due to torque T...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT