Question





10. A 1.5 kg mass is attached to the end set into simple harmonic motion wit ned to the end of a horizontal spring of spring
0 0
Add a comment Improve this question Transcribed image text
Answer #1

10. Let us considere a mass m attached to the end of a hore zonal spring of spring constant k K m from Hooks Raw the force adtr twtx=0 Where was a This is the equation of simple harmonic oscillaton. solution of this equation is x= Asimwt i. The motiu=&K A sinkut The potential energy is maximum when sin wt = 1 . Umax 4gh= 2 x (60) * (0.7532 K=60N/m A=0.75 m = 16.875J i Maximum potential energy of the system 16.875J from w is the angulare 21 f

Add a comment
Know the answer?
Add Answer to:
10. A 1.5 kg mass is attached to the end set into simple harmonic motion wit...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass is attached to the end of a spring and set into simple harmonic motion...

    A mass is attached to the end of a spring and set into simple harmonic motion with an amplitude A on a horizontal frictionless surface. Determine the following in terms of only the variable A. (a) Magnitude of the position in terms of A) of the oscillating mass when its speed is 20% of its maximum value. A (b) Magnitude of the position (in terms of A) of the oscillating mass when the elastic potential energy of the spring is...

  • A mass is attached to the end of a spring and set into simple harmonic motion...

    A mass is attached to the end of a spring and set into simple harmonic motion with an amplitude A on a horizontal frictionless surface. Determine the following in terms of only the variable A. (a) Magnitude of the position (in terms of A) of the oscillating mass when its speed is 40% of its maximum value. A (b) Magnitude of the position (in terms of A) of the oscillating mass when the elastic potential energy of the spring is...

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. (a) Amplitude = (b) Time Period = ( time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (f) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h) total energy of the spring -block system

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. ТАЛААР (a) Amplitude = (b) Time Period =( time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (1) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h) total energy of the spring -block system

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. VAAAA (a) Amplitude = (b) Time Period = ( time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (f) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h) total energy of the spring -block...

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. AM -1.5m (a) Amplitude = (b) Time Period = ( time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (f) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h) total energy of the spring...

  • A mass of 397 g is attached to a spring and set into simple harmonic motion...

    A mass of 397 g is attached to a spring and set into simple harmonic motion with a period of 0.246 s. If the total energy of the oscillating system is 5.94 J, determine the following. (a) maximum speed of the object 6.49 When is the total energy of the mass-spring system equal to the kinetic energy of the mass? m/s (b) force constant N/m (c) amplitude of the motion Additional Materials Reading

  • A mass of 377 g is attached to a spring and set into simple harmonic motion...

    A mass of 377 g is attached to a spring and set into simple harmonic motion with a period of 0.286 s. If the total energy of the oscillating system is 6.54 ), determine the following. (a) maximum speed of the object m/s (b) force constant N/m (c) amplitude of the motion

  • A mass of 207 g is attached to a spring and set into simple harmonic motion...

    A mass of 207 g is attached to a spring and set into simple harmonic motion with a period of 0.226 s. If the total energy of the oscillating system is 6.14 J, determine the following. (a) maximum speed of the object m/s (b) force constant N/m (c) amplitude of the motion

  • A mass of 317 g is attached to a spring and set into simple harmonic motion...

    A mass of 317 g is attached to a spring and set into simple harmonic motion with a period of 0.326 s. If the total energy of the oscillating system is 6.54 J, determine the following. (a) maximum speed of the object m/s (b) force constant N/m (c) amplitude of the motion m

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT