Question

A 1.16-kg box rests atop a massless vertical sprin

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Alright Dude, If that worked for you... don't forget to give THUMBS UP.(that will work for me!)
Please Vote...
If I missed something feel free to leave a comment.
atleast before giving down vote.
and, Thanks for using homeworklib- Smarter way to study.

Add a comment
Know the answer?
Add Answer to:
A 1.16-kg box rests atop a massless vertical spring with k = 4100 N/m that has...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A student pushes a baseball of m = 0.11 kg down onto the top of a vertical spring that has its lower end fixed table

     A student pushes a baseball of m = 0.11 kg down onto the top of a vertical spring that has its lower end fixed table, compressing the spring a distance of d = 0.12 meters. The spring constant of the spring is k = 580 N/m. Let the gravity potential energy be zero at the position of the baseball in the compressed spring. Part (a) The ball is then released. What is its speed, v, in meters per second, just after...

  • A 1.2 kg object on a vertical spring with k+ 500 N/m is compressed from its...

    A 1.2 kg object on a vertical spring with k+ 500 N/m is compressed from its equilibrium position. Once it is released, the mass is seen to have a velocity of 1.4 m/s at a position of 0.1 m from the equilibrium. a.) Determine the equation for this oscillation. b.) What is the maximum speed? c.) What is the maximum acceleration? d.) At what position from the equilibrium does the potential energy equal the kinetic energy?

  • A massless spring of a spring gun has a force constant k=800 N/m. A ball of...

    A massless spring of a spring gun has a force constant k=800 N/m. A ball of mass 0.5 kg is resting on top of the spring. The ball compresses the spring by d as shown in the right figure. When the gun is fired vertically, the ball reached a maximum height of 5 m from the top of the spring as it returns to its natural length. Calculate how much the spring was initially compressed (d). (a) 12 cm; (b)...

  • 9. A mass m is attached to a massless spring with a force constant k. The...

    9. A mass m is attached to a massless spring with a force constant k. The mass rests on a horizontal, frictionless surface. The system is compressed a distance x from the spring's initial position and then released. The momentum of the mass when the spring passes its equilibrium position is given by (A) xvmek (B) x/k/m o x/m/k (D) x/km + KxP = {mv² p=mv

  • A spring with k=130.0 N/m on surface is mounted to a vertical wall. A 5.00-kg box...

    A spring with k=130.0 N/m on surface is mounted to a vertical wall. A 5.00-kg box on the surface is placed in front of the spring. The coefficient of kinetic friction between the box and the surface is ylik = 0.400. A constant force F is applied to the box. F has magnitude 89.0 N and is directed against the wall. The spring is compressed 80.0 cm. Problem 5 Express your answer with the appropriate units. A spring with k=130.0...

  • A small box with mass 0.7 kg  is attached to a spring (k=300 N/m )...

    A small box with mass 0.7 kg  is attached to a spring (k=300 N/m ) and oscillates left and right. At a particular moment, the box is 20 cm to the right of its equilibrium position moving left with a speed of 2 m/s . What is the maximum distance to the right of its equilibrium position the box will reach? What is the maximum speed the box will have? What is the period of the box's oscillations?

  • A small box with mass 0.6 kg  is attached to a spring (k=250 N/m )...

    A small box with mass 0.6 kg  is attached to a spring (k=250 N/m ) and oscillates left and right. At a particular moment, the box is 20 cm to the right of its equilibrium position moving left with a speed of 4 m/s . a) What is the maximum distance to the right of its equilibrium position the box will reach? (cm) b) What is the maximum speed the box will have? (m/s) c) What is the period...

  • A small box with mass 0.5 kg  is attached to a spring (k=350 N/m )...

    A small box with mass 0.5 kg  is attached to a spring (k=350 N/m ) and oscillates left and right. At a particular moment, the box is 25 cm to the right of its equilibrium position moving left with a speed of 3 m/s. A) What is the maximum distance to the right of its equilibrium position the box will reach? B) What is the maximum speed the box will have? C) What is the period of the box's...

  • A small box with mass 0.6 kg  is attached to a spring (k=350 N/m )...

    A small box with mass 0.6 kg  is attached to a spring (k=350 N/m ) and oscillates left and right. At a particular moment, the box is 25 cm to the right of its equilibrium position moving left with a speed of 4 m/s . A) What is the maximum distance to the right of its equilibrium position the box will reach? B) What is the maximum speed the box will have? C) What is the period of the...

  • A small box with mass 0.4 kg  is attached to a spring (k=250 N/m )...

    A small box with mass 0.4 kg  is attached to a spring (k=250 N/m ) and oscillates left and right. At a particular moment, the box is 25 cm to the right of its equilibrium position moving left with a speed of 3 m/s. Part A: What is the maximum distance to the right of its equilibrium position the box will reach? Part B: What is the maximum speed the box will have? Part C: What is the period...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT