Question

An object of mass 3 grams is attached to a vertical spring with spring constant 27 grams/seca. Neglect any friction with the

0 0
Add a comment Improve this question Transcribed image text
Answer #1

• Griven: mass of the object= 3 grams Spring constant, k = 27 grams/5² • Solution: a) The general diffesential form, mytßytd) Given; y(0) = 303, yCO) = 9 :y(0) = 363 Fromean o 353= 4 coso +C, sino 353=, *1+ 0 ..14=303) Now, yCO) - 9 y(t)= -34, s

Add a comment
Know the answer?
Add Answer to:
An object of mass 3 grams is attached to a vertical spring with spring constant 27...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An object of mass 33 grams is attached to a vertical spring with spring constant 48grams/sec248grams/sec2....

    An object of mass 33 grams is attached to a vertical spring with spring constant 48grams/sec248grams/sec2. Neglect any friction with the air. Problem Value: 10 point(s). Problem Score: 0%. Attempts Remaining: 25 attempts. Help Entering Answers See Example 2.2.7, in Section 2.2, in the MTH 235 Lecture Notes. (10 points) An object of mass 3 grams is attached to a vertical spring with spring constant 48 grams/sec. Neglect any friction with the air. (a) Find the differential equation y' =...

  • An object of mass 4 grams hanging at the bottom of a spring with a spring...

    An object of mass 4 grams hanging at the bottom of a spring with a spring constant 3 grams per second square. Denote by y vertical coordinate, positive downwards and y 0 is the spring-mass resting position. TTA (a) Write the differential equation satisfied by this system Note: Write t for t, write y for y(t), and yp for y' (t). (b) Find the mechanical energy E of this system. 2(yp)2+3/2y 2 Note: Write t for t, write y for...

  • Part C An object of mass 4 grams hanging at the bottom of a spring with...

    Part C An object of mass 4 grams hanging at the bottom of a spring with a spring constant 3 grams per second square. Denote by y vertical coordinate, positive downwards, and y 0 is the spring-mass resting position. g(t) (a) Write the differential equation satisfied by this system. Note: Write t for t, write y for y(), and yp for y () (b) Find the mechanical energy E of this system. Note: Write t for t, write y for...

  • second square is moving in a liquid with damping constant 3 grams per second. Denote by...

    second square is moving in a liquid with damping constant 3 grams per second. Denote by y vertical coordinate, positive downwards, and y 0 is the spring-mass resting position. (a) Write the differential equation satisfied by this system. y" Note: Write t for t, write y for y(t), and yp for y' (t). (b) Find the mechanical energy E of this system E(t) Note: Write t for t, write y for y(t), and yp for y' (t). (c) Find the...

  • Consider the differential equation y" – 7 ý + 12 y = 3 e21. (a) Find...

    Consider the differential equation y" – 7 ý + 12 y = 3 e21. (a) Find r1, r2, roots of the characteristic polynomial of the equation above. W r1, r2 = 3,4 (b) Find a set of real-valued fundamental solutions to the homogeneous differential equation corresponding to the one above. yı(t) = e^(3t) M y2(t) = e^(41) (c) Find a particular solution Yp of the differential equation above. M yp(t) = Note: You can earn partial credit on this problem.

  • An object of mass m 5 kilograms falls vertically to the ground under the action of...

    An object of mass m 5 kilograms falls vertically to the ground under the action of the earth gravitational acceleration of magnitude g 10 meters per second squared. Denote by y vertical coordinate, positive upwards, and let y 0 be at the earth surface. Recall that the force on the object in this situation is f--mg, where the negative sign says the force points downwards. (a) Write the differential equation satisfied by this system. y"-10 Note: Write t for t,...

  • Consider the differential equation e24 y" – 4y +4y= t> 0. t2 (a) Find T1, T2,...

    Consider the differential equation e24 y" – 4y +4y= t> 0. t2 (a) Find T1, T2, roots of the characteristic polynomial of the equation above. 11,12 M (b) Find a set of real-valued fundamental solutions to the homogeneous differential equation corresponding to the one above. yı(t) M y2(t) = M (C) Find the Wronskian of the fundamental solutions you found in part (b). W(t) M (d) Use the fundamental solutions you found in (b) to find functions ui and Usuch...

  • onsider the differential equation y" - 7y + 12 y = 3 cos(3t). (a) Find r....

    onsider the differential equation y" - 7y + 12 y = 3 cos(3t). (a) Find r. 12. roots of the characteristic polynomial of the equation above. ri, r2 = 3,4 (b) Find a set of real-valued fundamental solutions to the homogeneous differential equation corresponding to the one above. Yi (t) = 0 (31) »2(t) = 0 (41) (c) Find a particular solution y, of the differential equation above. y,(t) = Consider the differential equation y! -8y + 15 y =...

  • Consider the differential equation y" – 7y + 12 y = 0. (a) Find r1, 72,...

    Consider the differential equation y" – 7y + 12 y = 0. (a) Find r1, 72, roots of the characteristic polynomial of the equation above. 11,2 M (b) Find a set of real-valued fundamental solutions to the differential equation above. yı(t) M y2(t) M (C) Find the solution y of the the differential equation above that satisfies the initial conditions y(0) = -4, y'(0) = 1. g(t) = M Consider the differential equation y" – 64 +9y=0. (a) Find r1...

  • A vertical spring has a mass of 500 g attatched to it, the system is at equilibrium. When pulled ...

    A vertical spring has a mass of 500 g attatched to it, the system is at equilibrium. When pulled 30 cm down, it takes 12.4 seconds to finish 10 oscillations. The amplitude is approximately 20 cm througout. a. what is the spring constant? when the system is at rest, the mass is 40 cm above a flat surface. Find the potential energy of the spring, the gravitational potential energy of the mass, and the kinetic energy of the mass when:...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT