Question

An object of mass 4 grams hanging at the bottom of a spring with a spring constant 3 grams per second square. Denote by y vertical coordinate, positive downwards, and y 0 is the spring-mass resting position. g(t) (a) Write the differential equation satisfied by this system. Note: Write t for t, write y for y(), and yp for y () (b) Find the mechanical energy E of this system. Note: Write t for t, write y for y(t), and yp for y (t). (c) If the initial position of the object is y(0) =-1 and its initial velocity is y(0) = 2, find the maximum value of the position of the object, ymax >0, achieved during its motion. Help Entering Answers Preview My Answers Submit Answers Show me another

Part C

0 0
Add a comment Improve this question Transcribed image text
Answer #1

we can get the maximum position of the object by using relation of velocity, angular frequency, amplitude and position as solved belowSoluthion tc) fresuen 2 Cons w mars block ad s dnd bt Relation l veloc 3

Add a comment
Know the answer?
Add Answer to:
Part C An object of mass 4 grams hanging at the bottom of a spring with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An object of mass 4 grams hanging at the bottom of a spring with a spring...

    An object of mass 4 grams hanging at the bottom of a spring with a spring constant 3 grams per second square. Denote by y vertical coordinate, positive downwards and y 0 is the spring-mass resting position. TTA (a) Write the differential equation satisfied by this system Note: Write t for t, write y for y(t), and yp for y' (t). (b) Find the mechanical energy E of this system. 2(yp)2+3/2y 2 Note: Write t for t, write y for...

  • An object of mass 33 grams is attached to a vertical spring with spring constant 48grams/sec248grams/sec2....

    An object of mass 33 grams is attached to a vertical spring with spring constant 48grams/sec248grams/sec2. Neglect any friction with the air. Problem Value: 10 point(s). Problem Score: 0%. Attempts Remaining: 25 attempts. Help Entering Answers See Example 2.2.7, in Section 2.2, in the MTH 235 Lecture Notes. (10 points) An object of mass 3 grams is attached to a vertical spring with spring constant 48 grams/sec. Neglect any friction with the air. (a) Find the differential equation y' =...

  • An object of mass 3 grams is attached to a vertical spring with spring constant 27...

    An object of mass 3 grams is attached to a vertical spring with spring constant 27 grams/seca. Neglect any friction with the air. (a) Find the differential equation y = fly, y) satisfied by the function y, the displacement of the object from its equilibrium position, positive downwards. Write y for y(t) and yp for y' (t). y = (b) Find rı,r2, roots of the characteristic polynomial of the equation above. ru,r2 = (b) Find a set of real-valued fundamental...

  • An object of mass m 5 kilograms falls vertically to the ground under the action of...

    An object of mass m 5 kilograms falls vertically to the ground under the action of the earth gravitational acceleration of magnitude g 10 meters per second squared. Denote by y vertical coordinate, positive upwards, and let y 0 be at the earth surface. Recall that the force on the object in this situation is f--mg, where the negative sign says the force points downwards. (a) Write the differential equation satisfied by this system. y"-10 Note: Write t for t,...

  • second square is moving in a liquid with damping constant 3 grams per second. Denote by...

    second square is moving in a liquid with damping constant 3 grams per second. Denote by y vertical coordinate, positive downwards, and y 0 is the spring-mass resting position. (a) Write the differential equation satisfied by this system. y" Note: Write t for t, write y for y(t), and yp for y' (t). (b) Find the mechanical energy E of this system E(t) Note: Write t for t, write y for y(t), and yp for y' (t). (c) Find the...

  • a) A hanging spring stretches by 35.0 cm when an object of mass 450 g is...

    a) A hanging spring stretches by 35.0 cm when an object of mass 450 g is hung on it at rest. In this situation, we define its position as x =0. The object is pulled down an additional 18.0 cm and released from rest to oscillate without friction. What is its position x at a moment 84.4 s later? (b) Find the distance traveled by the vibrating object in part (a). (c) What If? Another hanging spring stretches by 35.5...

  • A 189-kg mass, when attached to the end of a spring hanging vertically, stretches the spring...

    A 189-kg mass, when attached to the end of a spring hanging vertically, stretches the spring 9 m. The mass is in a medium that exerts a viscous resistance of 3024 N when the mass has a velocity of 4 m/sec. Assume the mass is given an initial velocity of 14 m/s from the equilibrium position. a) Determine the spring constant k. Use g = 10 m/sec. k b) Determine the damping coeffient 7. 7 c) If the initial value...

  • A 288-kg mass, when attached to the end of a spring hanging vertically, stretches the spring...

    A 288-kg mass, when attached to the end of a spring hanging vertically, stretches the spring 8 m. The mass is in a medium that exerts a viscous resistance of 576 N when the mass has a velocity of 4 m/sec. Assume the mass is given an initial velocity of 18 m/s from the equilibrium position. a) Determine the spring constant k. Use g = 10 m/sec. k b) Determine the damping coeffient 7. 7= c) If the initial value...

  • A 1.8 kg object oscillates at the end of a vertically hanging light spring once every 0.40 s . Part A Write down the equation giving its position y (+ upward) as a function of time t. Assume the...

    A 1.8 kg object oscillates at the end of a vertically hanging light spring once every 0.40 s . Part A Write down the equation giving its position y (+ upward) as a function of time t. Assume the object started by being compressed 16 cm from the equilibrium position (where y = 0), and released. Note: the equilibrium position is defined here as that location of the mass at rest when it is freely hung from the spring, not...

  • We know that a force of 7.2 Newtons is required to stretch a certain spring 0.8...

    We know that a force of 7.2 Newtons is required to stretch a certain spring 0.8 meters beyond its natural length. Questions Q1 (0/10) A 2.56-kg mass is attached to this spring and allowed to come to equilibrium. The mass-spring system is then set in motion by applying a push in the upward direction that gives the mass an initial velocity of 1.15 meters per second. Q2 (0/10) Q3 (0/10) Q4 (0/10) Q5 (0/10) Q6 (0/10) Let y(t) represent the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT