Question

2. (a) Derive the mathematical model for the system shown; no need to simplify. (b) Draw the electrical circuit analogous to

1 0
Add a comment Improve this question Transcribed image text
Answer #1

2. Pact Cl 2 Ct) C3) съл pce Voltage emalosy) 2 멋 V( ) 2.

Add a comment
Know the answer?
Add Answer to:
2. (a) Derive the mathematical model for the system shown; no need to simplify. (b) Draw...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Using the force-voltage analogy shown in table 1, obtain a mechanical analogu electrical system shown above...

    Using the force-voltage analogy shown in table 1, obtain a mechanical analogu electrical system shown above (4 pts) Table 1. Force-Voltage Analogy Force, p (torque T Mass, m (moment of inertia J) Viscous-friction coefficient, b Spring constant, k Displacement, x (angular displacement 6) Voltage, Inductance, L Resistance, R Reciprocal of capacitance, /C Charge, Velocity (angular velocity b) Current, i

  • (5 marks) For the followving electrical system shown in Figure 3. a) Derive the mathematical mode...

    (5 marks) For the followving electrical system shown in Figure 3. a) Derive the mathematical model of the system b) Draw Block diagram of the system, then, c) Obtain the transfer function of Eo(s)/E (s) Figure 3 (5 marks) For the followving electrical system shown in Figure 3. a) Derive the mathematical model of the system b) Draw Block diagram of the system, then, c) Obtain the transfer function of Eo(s)/E (s) Figure 3

  • Problem 2: Transfer Functions of Mechanical Systems. (20 Points) A model sketch for a two-mass mechanical...

    Problem 2: Transfer Functions of Mechanical Systems. (20 Points) A model sketch for a two-mass mechanical system subjected to fluctuations (t) at the wall is provided in figure 2. Spring k, is interconnected with both spring ka and damper Os at the nodal point. The independent displacement of mass m is denoted by 1, the independent displacement of mass m, is denoted by r2, and the independent displacement of the node is denoted by ra. Assume a linear force-displacement/velocity relationship...

  • 2. The electromechanical system shown in the figure below represents a simplified model of a capacitor...

    2. The electromechanical system shown in the figure below represents a simplified model of a capacitor microphone. The system consists of a parallel plate capacitor connected into an electric circuit. Capacitor plate a is rigidly fixed to the microphone frame. Sound waves passing through the mouthpiece exert a force fs(t) on plate b, which has mass M and is connected to the frame by a set of springs and dampers The capacitance C is a function of the distance x...

  • 4. Consider the mechanical system shown below with a spring with stiffness, k (N/m), in parallel...

    4. Consider the mechanical system shown below with a spring with stiffness, k (N/m), in parallel with a viscous damper with coefficient, h (Nós/m) and an externally applied force, Fexi(t) (N). u(t) a. Find the equation that relates the applied force, Fext(t) and the displacement, u(t). b. If the spring component has a stiffness of k = 75 N/m, the damper component has coefficient h = 50 N s/m and the externally applied force is a constant 4.5 N applied...

  • Assume we have a series RLC circuit. The model of the RLC circuit can be represented...

    Assume we have a series RLC circuit. The model of the RLC circuit can be represented by The circuit is driven by voltage source ean). And the crcuit elements are resistance R 0.4 capacitance C 0.04F, and inductance L 0.002H. At time t 0, the voltage source is stepped from zero to 2V (the circuit elements initially have zero charge and zero current). Determine the solution for charge q(t) stored in the capacitor using Laplace transform methods.

  • Derive equations 1 and 2, thank you! When you have a RC series circuit in an...

    Derive equations 1 and 2, thank you! When you have a RC series circuit in an AC source of angular frequency ω (ω = 2πf), you can calculate the capacitance (C) from the equation: max, where VmarR is the amplitude of the voltage across the resistor and Vmax.c is the amplitude of the voltage across the capacitor. [You have to derive this equation in your report.] Similarly, when you have a RL series circuit in an AC source of angular...

  • Problem 2 - A modified mass-spring-damper system: Model the modified mass-spring-damper system shown below. The mass...

    Problem 2 - A modified mass-spring-damper system: Model the modified mass-spring-damper system shown below. The mass of the handle is negligi- ble (only 1 FBD is necessary). Consider the displacement (t) to be the input to the system and the cart displacement az(t) to be the output. You may assume negligible drag. MwSpring-Damper System M0 Problem 3 Repeat problem 2, but with the following differences: • Assume the mass of the handle m, is not equal to zero. You may...

  • Q 1- 08 Pts) Figure below is a diagram of a DC motor connected in parnllel to a current source i,...

    Q 1- 08 Pts) Figure below is a diagram of a DC motor connected in parnllel to a current source i,. The torque and back-EMF constants of the motor are Ko K respectively, the motor resistance is R, also modeled as connected in parallel, the motor inertia is 1- (not shown), and the motor inductance is negligible. The motor load is an inertia J with compliance (stiffness) K and viscous friction coefficient b, and it is attached a gear pair...

  • D.C. motor is shown below, where the inductance L and the resistance R model the armature...

    D.C. motor is shown below, where the inductance L and the resistance R model the armature circuit. The voltage Vbrepresents the back-emf which is proportional to dθ/dt via Kf. The torque T generated by the motor is proportional to the i via a constant Kt. In this application, let the constants Kt = Kf. The inertia J represents the combined inertia of the motor and load. The viscous friction acting on the output shaft is b. Attached to the shaft...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT