Question

A generic solid, X, has a molar mass of 61.0 g/mol. In a constant-pressure calorimeter, 25.5 g of X is dissolved in 387 g of
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer mtotal - mars of x + mass of water = 25.5g + 387 g 412.5 sg heat absorbed by solution q= m solutions X Csolution & (I

Add a comment
Know the answer?
Add Answer to:
A generic solid, X, has a molar mass of 61.0 g/mol. In a constant-pressure calorimeter, 25.5...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A generic solid, X, has a molar mass of 72.6 g/mol. In a constant-pressure calorimeter, 16.6...

    A generic solid, X, has a molar mass of 72.6 g/mol. In a constant-pressure calorimeter, 16.6 g of X is dissolved in 365 g of water at 23.00 °C. X($) — X(aq) The temperature of the resulting solution rises to 27.80 °C. Assume the solution has the same specific heat as water, 4.184 J/(g°C), and that there is negligible heat loss to the surroundings. How much heat was absorbed by the solution? 9 kJ What is the enthalpy of the...

  • A generic solid, X, has a molar mass of 74.3 g/mol. In a constant-pressure calorimeter, 11.5...

    A generic solid, X, has a molar mass of 74.3 g/mol. In a constant-pressure calorimeter, 11.5 g of X is dissolved in 213 g of water at 23.00 °C. X(s) X(aq) The temperature of the resulting solution rises to 25.20 °C. Assume the solution has the same specific heat as water, 4.184 J/(g:°C), and that there is negligible heat loss to the surroundings. How much heat was absorbed by the solution? = What is the enthalpy of the reaction? AH...

  • A generic solid, X, has a molar mass of 61.6 g/mol. In a constant-pressure calorimeter, 18.3...

    A generic solid, X, has a molar mass of 61.6 g/mol. In a constant-pressure calorimeter, 18.3 g of X is dissolved in 383 g of water at 23.00 °C.X(s) ͢ X(aq)The temperature of the resulting solution rises to 29.10 °C. Assume the solution has the same specific heat as water, 4.184 J/(g·°C), and that there's negligible heat loss to the surroundings. How much heat was absorbed by the solution?What is the enthalpy of the reaction?

  • Potassium nitrate, KNO,, has a molar mass of 101.1 g/mol. In a constant-pressure calorimeter, 25.9 g...

    Potassium nitrate, KNO,, has a molar mass of 101.1 g/mol. In a constant-pressure calorimeter, 25.9 g of KNO, is dissolved in 319 g of water at 23.00 °C. KNO,() K+(aq) + NO (aq) The temperature of the resulting solution decreases to 20.90 °C. Assume that the resulting solution has the same specific heat as water, 4.184 J/(g: "C), and that there is negligible heat loss to the surroundings. How much heat was released by the solution? What is the enthalpy...

  • Potassium nitrate, KNO3, has a molar mass of 101.1 g/mol. In a constant-pressure calorimeter, 23.0 g...

    Potassium nitrate, KNO3, has a molar mass of 101.1 g/mol. In a constant-pressure calorimeter, 23.0 g of KNO, is dissolved in 383 g of water at 23.00 °C. HO KNO,(s) + (aq) + NO3(aq) The temperature of the resulting solution decreases to 18.40 °C. Assume that the resulting solution has the same specific heat as water, 4.184 J/(g. "C), and that there is negligible heat loss to the surroundings. How much heat was released by the solution? Poln What is...

  • Potassium nitrate, KNO3, has a molar mass of 101.1 g/mol. In a constant-pressure calorimeter, 44.1 g...

    Potassium nitrate, KNO3, has a molar mass of 101.1 g/mol. In a constant-pressure calorimeter, 44.1 g of KNO3 is dissolved in 221 g of water at 23.00 °C. KNO3(s) to  K+ (aq) + NO3- (aq) The temperature of the resulting solution decreases to 21.20 °C. Assume the resulting solution has the same specific heat as water, 4.184 J/(g·°C), and that there is negligible heat loss to the surroundings. How much heat was released by the solution? How much heat was released...

  • A calorimeter contains 29.0 mL of water at 14.0 ∘C . When 1.30 g of X (a substance with a molar mass of 61.0 g/mol ) is...

    A calorimeter contains 29.0 mL of water at 14.0 ∘C . When 1.30 g of X (a substance with a molar mass of 61.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 27.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...

  • A silver cube with an edge length of 2.25 cm and a gold cube with an...

    A silver cube with an edge length of 2.25 cm and a gold cube with an edge length of 2.72 cm are both heated to 88.8C and placed in 101.5 mL of water at 19.6'C. What is the final temperature of the water when thermal equilibrium is reached? Substance gold silver water Specific heat (J/g.°C) 0.1256 0.2386 4.184 Density (g/cm) 19.3 10.5 1.00 Tonal 11 'C Using the standard enthalpies of formation, what is the standard enthalpy of reaction? CO(g)...

  • The molar mass of solid is 110.98 g/mol PART IV MOLAR MASS OF SOLID Mass of...

    The molar mass of solid is 110.98 g/mol PART IV MOLAR MASS OF SOLID Mass of Calorimeter (g) 10%1841 991565p S10005 Mass of Calorimeter plus water (g) Mass of water (g) Mass of unknown solid (g) alig'c 28.3 Initial temperature (°C) Final temperature (C) Temperature change (AT) Heat, q (kJ) Heat of solution per gram of solid (kJ/g) Heat of solution per mole of compound (kJ/mol) DATA ANALYSIS 1. Calculate q solution (Cs for water is 4.184 J/g°C) 2. Identify...

  • A student determines the heat of dissolution of solid copper(II) sulfate using a coffee cup calorimeter...

    A student determines the heat of dissolution of solid copper(II) sulfate using a coffee cup calorimeter of negligible heat capacity When 2.10 g of Cus04() is dissolved in 104.00 g of water, the temperature of the solution increases from 25.00 to 27.30 °C. Based on the student's observation, calculate the enthalpy of dissolution of CuSO4(s) in kJ/mol. Assume the specific heat of the solution is 4.184 RC AH dissolution - kJ/mol

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT