Question

Let X1, X2, ..., X48 denote a random sample of size n = 48 from the...

Let X1, X2, ..., X48 denote a random sample of size n = 48 from the uniform distribution U(?1,1) with pdf f(x) = 1/2, ?1 < x < 1. E(X) = 0, Var(X) = 1/3 Let Y = (Summation)48, i=1 Xi and X= 1/48 (Summation)48, i=1 Xi. Use the Central Limit Theorem to approximate the following probability. 1. P(1.2<Y<4) 2. P(X< 1/12)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(5-a)2-12 ((1) _ (-1))2 48*0 0 variance 0.333333 For Y, mean Variance481/3 16 Using CLT, distribution is approximately normaladross the row to the rght under couTnn 0.00 and get uahle 0.0119 P(1.2 < Y < 4) 0.2234 22.34% For X, mean 0 Variance 1/3 * 1

Add a comment
Know the answer?
Add Answer to:
Let X1, X2, ..., X48 denote a random sample of size n = 48 from the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. Let X1, . . . , Xn denote a random sample (iid.) of size n...

    6. Let X1, . . . , Xn denote a random sample (iid.) of size n from some distribution with unknown μ and σ2-25. Also let X-(1/ . (a) If the sample size n 64, compute the approximate probability that the sample mean X n) Σηι Xi denote the sample mean will be within 0.5 units of the unknown p. (b) If the sample size n must be chosen such that the probability is at least 0.95 that the sample...

  • Problem 1 (20 points). Suppose X1, X2, ... , Xn are a random sample from the...

    Problem 1 (20 points). Suppose X1, X2, ... , Xn are a random sample from the uniform distribution over [0, 1]. (i) Let In be the sample mean, derive the Central Limit Theorem for år. (ii) Calculate E(X) and Var(x}). (iii) Let Yn = (1/n) - X. Derive the Central Limit Theorem for Yn. (iv) Set Zn = 1/Yn. Derive the Central Limit Theorem for Zn.

  • 6. Let X1, X2,.. , Xn denote a random sample of size n> 1 from a...

    6. Let X1, X2,.. , Xn denote a random sample of size n> 1 from a distribution with pdf f(x; 6) = 6e-8, 0<x< 20, zero elsewhere, and 0 > 0. Le Y = x. (a) Show that Y is a sufficient and complete statistics for . (b) Prove that (n-1)/Y is an unbiased estimator of 0.

  • X denote the mean of a random sample of size 25 from a gamma type distribu-...

    X denote the mean of a random sample of size 25 from a gamma type distribu- tion with a = 4 and β > 0. Use the Central Limit theorem to find an approximate 0.954 confidence interval for μ, the mean of the gallina distribution. Hint: Use the random variable (X-43)/?7,/432/25. 6. Let Yi < ½ < < }, denote the order statistics of a randon sample of size n from a distribution that has pdf f(z) = 4r3/04, O...

  • 6) (10pts) Let X be the mean of a random sample of size n-20 from the...

    6) (10pts) Let X be the mean of a random sample of size n-20 from the uniform distribution 6) U(0,1). Approximate P( 02: X sab ) Using the Central Limit Theorem

  • Central Limit Theorem: let x1,x2,...,xn be I.I.D. random variables with E(xi)= U Var(xi)= (sigma)^2 defind Z=...

    Central Limit Theorem: let x1,x2,...,xn be I.I.D. random variables with E(xi)= U Var(xi)= (sigma)^2 defind Z= x1+x2+...+xn the distribution of Z converges to a gaussian distribution P(Z<=z)=1-Q((z-Uz)/(sigma)^2) Use MATLAB to prove the central limit theorem. To achieve this, you will need to generate N random variables (I.I.D. with the distribution of your choice) and show that the distribution of the sum approaches a Guassian distribution. Plot the distribution and matlab code. Hint: you may find the hist() function helpful

  • Let X1, X2, ... , Xn be a random sample of size n from the exponential...

    Let X1, X2, ... , Xn be a random sample of size n from the exponential distribution whose pdf is f(x; θ) = (1/θ)e^(−x/θ) , 0 < x < ∞, 0 <θ< ∞. Find the MVUE for θ. Let X1, X2, ... , Xn be a random sample of size n from the exponential distribution whose pdf is f(x; θ) = θe^(−θx) , 0 < x < ∞, 0 <θ< ∞. Find the MVUE for θ.

  • Let X1, X2, ...,Xn denote a random sample of size n from a Pareto distribution. X(1)...

    Let X1, X2, ...,Xn denote a random sample of size n from a Pareto distribution. X(1) = min(X1, X2, ..., Xn) has the cumulative distribution function given by: αη 1 - ( r> B X F(x) = . x <B 0 Show that X(1) is a consistent estimator of ß.

  • by central limit theorem 12. Suppose that X1, X2, ..., X 40 denote a random sample...

    by central limit theorem 12. Suppose that X1, X2, ..., X 40 denote a random sample of measurements on the proportion of impurities in iron ore samples. Let each variable X have a probability density function given by 132 0<x<1 o elsewhere The ore is to be rejected by the potential buyer if sample of size 40 X, exceeds 2.8. Estimate P ., X. > 2.8) for the

  • Let X1, X2,...,Xn denote a random sample from a distribution that is N(0, θ). a) Show...

    Let X1, X2,...,Xn denote a random sample from a distribution that is N(0, θ). a) Show that Y = sigma (1 to n) Xi2 is a complete sufficient statistic for θ. (solved) b) Find the UMVUE of θ2. (need help with this one) Note: I am in particular having trouble finding out what distribution Y = sigma Xi^2 is. The professor advise us to find the second moment generating function for Y, but I not sure how I find that....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT