Question

The cantilever T-beam shown below is 2 meters long and cemented to a wall. The origin of the Cartesian axis shown is at point A on the wall. The cross-section dimensions are shown at the front of the beam.

Find the following: 1) Location of the beams cross section centroid w.r.t. the origin A 2) Area moment of inertia of the bea

Z + - - F2 = (2) - 2 k) kN $- 37.5 37.5 100 F3 = (-23 + 2 k) KN note: all dimensions in mm F,= (i -4 j - 8 k) kN

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Part 1 Draw the cross section of the beam as follows: 25 mm 37.5 mm 37.5 mm 100 mm 25 mm =- Calculate the location of centroiCalculate the area moment of inertia of rectangular cross-section about z-axis as follows: I=1, +1, I = 520833.33+16145833.33

Add a comment
Know the answer?
Add Answer to:
The cantilever T-beam shown below is 2 meters long and cemented to a wall. The origin...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 60 mm A 2 m long cantilever beam with an asymmetric cross-section is subjected to a...

    60 mm A 2 m long cantilever beam with an asymmetric cross-section is subjected to a tip load of 3 kN, as shown. The y- and z-axes pass through the centroid of the cross-section. (a) Show that moments of inertia for the cross-section are 1.33x106 mm4, Iy - 0.917x106 mm4 and Iy-0.03x106 mm4, (b) Find the inclination of the neutral axis and (c) Find the magnitude and location of maximum tensile and compressive stresses in the C.S 10 0° -28...

  • 4. (30%) For a beam with a T-section as shown, the cross-sectional dimensions of 12 mm....

    4. (30%) For a beam with a T-section as shown, the cross-sectional dimensions of 12 mm. The centroid is 75 mm, h = 90 mm, t the beam are b 60 mm, h, at C and c 30 mm. At a certain section of the beam, the bending moment is M 5.4 kN m and the vertical shear force is V= 30 kN. (a) Show that the moment of inertia of the cross-section about the z axis (the neutral axis)...

  • The cross-section of a beam is shown below. The top rectanular piece of the cross-section is...

    The cross-section of a beam is shown below. The top rectanular piece of the cross-section is a steel section 6 inches wide by 8 inches deep. The dimensions of the member are shown below in the table. The cross-section is loaded in bending by a moment about the zz-axis. The allowable bending stress of the cross-section is 42 (ksi). Determine: a) the elastic centroid of the cross-section. b) the yield moment. c) the plastic centroid of the cross-section d) the...

  • A cantilever beam supports the loads shown. The cross-sectional dimensions of the shape are also shown....

    A cantilever beam supports the loads shown. The cross-sectional dimensions of the shape are also shown. Assume mm, by - 85 mm, 5 mm, 9 mm. Determine - 0.5 m, P. - 4.0 kN, Pg - 7.5 kN, Pe-2.0 kN, -85 (a) the maximum vertical shear stress. (b) the maximum compression bending stress. (c) the maximum tension bending stress. See the coordinate system for the beam in the problem figure with the origin of the x axis at the feed...

  • a plastic beam shown below, having a box section, where the top plate is cemented in...

    a plastic beam shown below, having a box section, where the top plate is cemented in place, as indicated. All dimensions are in millimeters. For the 12kN load shown, what is the shear stress acting on the cemented joint? ear stress acting on the cemented joint? 12 kN Cement 5 40 w is shown a 1-in. solid 1-in.-dia

  • 1. A beam has a max moment of 45 kN-m. The cross section of the beam is shown in the figure below...

    1. A beam has a max moment of 45 kN-m. The cross section of the beam is shown in the figure below. a. State the distance of the centroid from the 2 axis. b. Calculate the area moment of inertia about the centroid. c. Calculate the maximum stress in the beam 300 mm 20 mm 185 mm 20 mm 35 mm 1. A beam has a max moment of 45 kN-m. The cross section of the beam is shown in...

  • Z = 13*100mm PROBLEM: A thin-walled cantilever beam of unsymmetrical cross-section is subjected to a uniform...

    Z = 13*100mm PROBLEM: A thin-walled cantilever beam of unsymmetrical cross-section is subjected to a uniform distributed load was shown in the figure below. The wall thickness t can be assumed to be very small in comparison with hin calculating the sectional properties. Determine the stress distribution on the cross section and the position of the neutral axis. Find the deflection of the beam at the cross section. Use:w=0.8N/mm: L = 1500 mm; h = 80 mm: t= 2 mm:...

  • Q1. A 2 m long T-beam is built-in at one end and has a force of...

    Q1. A 2 m long T-beam is built-in at one end and has a force of 7 kN applied at its free end. The dimensions of the cross-section of the beam are shown in Fig. Q1 and the force acts at 10° to the vertical though the centroid of the section. 7 KN 1 -10° 251 -y 100 1 44 32 44 all dimensions in mm Fig. Q1 - Cross-sectional Dimensions of T-beam (a) Find the position of the centroid...

  • 9 The cross-section of a beam is shown below. The top rectanular piece of the cross-section...

    9 The cross-section of a beam is shown below. The top rectanular piece of the cross-section is a steel section 6 inches wide by 8 inches deep. The dimensions of the member are shown below in the table. The cross-section is loaded in bending by a moment about the zz-axis. The allowable bending stress of the cross-section is 36 (ksi). Determine: a) the elastic centroid of the cross-section. b) the yield moment. c) the plastic centroid of the cross-section d)...

  • The cantilever beam shown is subjected to a concentrated load of P = 46200 lb. The...

    The cantilever beam shown is subjected to a concentrated load of P = 46200 lb. The cross-sectional dimensions and the moment of inertia of the W16x40 wide-flange shape are: d = 16.0 in. tw = 0.305 in. bf = 7.00 in. tf = 0.505 in. Iz = 518 in.4 Compute the value of the shear stress at point K, located at yK = 2.4 in. above the centroidal axis. by P y T tw K Lyk Z d x Ун...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT