Question

015 10.0 points A 20 g block of ice is cooled to -87°C. It is added to 566 g of water in an 64 g copper calorimeter at a temp
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Soluno Given that - D 209 block g of block of ice ice is is cooled - 87°c. cooled a to mice = 20g = 80 X 10 3 = 0.02 kg TiceT = - 19.03°C 47160.45 2477.77 Temperature T & 1900 Ang

Add a comment
Know the answer?
Add Answer to:
015 10.0 points A 20 g block of ice is cooled to -87°C. It is added...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 015 10.0 points A 34 g block of ice is cooled to -80°C. It is added...

    015 10.0 points A 34 g block of ice is cooled to -80°C. It is added to 562 g of water in an 75 g copper calorimeter at a temperature of 24°C. Find the final temperature. The specific heat of copper is 387 J/kg. °C and of ice is 2090 J/kg.°C. The latent heat of fusion of water is 3.33 x 10° J/kg and its specific heat is 4186 J/kg.°C. Answer in units of°C.

  • 015 10.0 points A 31 g block of ice is cooled to -80°C. It is added...

    015 10.0 points A 31 g block of ice is cooled to -80°C. It is added to 547 g of water in an 98 g copper calorimeter at a temperature of 25°C Find the final temperature. The specific heat of copper is 387 J/kg °C and of ice is 2090 J/kg-oC. The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg .°C. Answer in units of C

  • A 26 g block of ice is cooled to −62 ◦C. It is added to 569...

    A 26 g block of ice is cooled to −62 ◦C. It is added to 569 g of water in an 80 g copper calorimeter at a temperature of 27◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.

  • A 25 g block of ice is cooled to −74 ◦C. It is added to 559...

    A 25 g block of ice is cooled to −74 ◦C. It is added to 559 g of water in an 80 g copper calorimeter at a temperature of 21◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.

  • A 28 g block of ice is cooled to −78◦C. It is added to 562 g...

    A 28 g block of ice is cooled to −78◦C. It is added to 562 g of water in an 80 g copper calorimeter at a temperature of 21◦C. Find the final temperature. The specific heat of copper is 387 J/kg ·◦C and of ice is 2090 J/kg ·◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg ·◦C . Answer in units of ◦C. i need help asap

  • A 40 g block of ice is cooled to -70°C and is then added to 590...

    A 40 g block of ice is cooled to -70°C and is then added to 590 g of water in an 80 g copper calorimeter at a temperature of 26°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. Remember that the ice must first warm to 0°C, melt, and then continue warming as water. The specific heat of ice is 0.500 cal/g ·°C = 2090 J/kg°C. _____________°C

  • A 25.0-g block of ice at -15.00°C is dropped into a calorimeter (of negligible heat capacity)...

    A 25.0-g block of ice at -15.00°C is dropped into a calorimeter (of negligible heat capacity) containing water at 15.00°C. When equilibrium is reached, the final temperature is 8.00°C. How much water did the calorimeter contain initially? The specific heat of ice is 2090 J/kg ∙ K, that of water is 4186 J/kg ∙ K, and the latent heat of fusion of water is 33.5 × 104 J/kg.

  • 015 10.0 points no x How much energy is required to change a 35 g is...

    015 10.0 points no x How much energy is required to change a 35 g is ice cube from ice at -12C to steam at 113 C? ber The specific heat of ice is 2090 J/kg.° C, the specific heat of water is 4186 J/kg.°C, the specific heat of stream is 2010 J/kg. C, the red heat of fusion is 3.33 x 105 J/kg, and the heat 1s of vaporization is 2.26 × 100 J/kg. nd Answer in units of...

  • hello please A 40-g block of ice is cooled to -78.0 degree C and then added...

    hello please A 40-g block of ice is cooled to -78.0 degree C and then added to 560-g of water in an 80-g copper calorimeter at a temperature of 25.0 degree C. Determine the final temperature of the system consisting of the ice, water, and calorimeter (if not all the ice melts, determine how much ice is left). Remember that the ice must first warm to 0 degree C, melt and then continue warming as water. The specific heat of...

  • A 40-g block of ice is cooled to −77°C and is then added to 590 g...

    A 40-g block of ice is cooled to −77°C and is then added to 590 g of water in an 80-g copper calorimeter at a temperature of 23°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT