Question

In Geothermal-steam power cycle, the source of heat is the hot water from well. The heat exchanger receive hot water at Tg1= 105 oC and the water leaves at 40 oC as shown in Figure 3. Steam exits the boiler at 40 bar, 300 oC, and it exits the turbine at 1 bar. Saturated liquid water exits the condenser at 1 bar. The plant operate to generate 20 MW electric power with generator efficiency of 0.95. The isentropic efficiency of the turbine is 0.85, and pump isentropic efficiency is 0.8.

The system is insulated so you can disregard heat transferred to surroundings.

a) Calculate the mass flow rate of the steam b) Calculate the mass flow rate of the hot water from the geothermal well c) The rejected heat from the condenser d) Calculate the thermal efficiency of the cycle consider only the turbine output power as a useful power p1=40 bar Tl-300 °C Heat exchanger Turbine Generator 20 MW Tgl-105 °C Tg2-40 °C 1 bar Condenser Figure 3 Table 3 Data Numeric Unit value Hot water to the heat exchanger temperature,Tgl105 Hot water to the well temperature, Tg2 Steam pressure p4 p Steam temperature ti Pressure after turbine and condenserp2-ps Wet vapour quality after condenser Turbine isentropic efficiency,nsT Pump isentropic efficiency, ? Generator efficiency, ? G oC 40 40 300 oC ar oC ar (saturated liquid). x30 0.85 0.8 0.95

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Add a comment
Know the answer?
Add Answer to:
In Geothermal-steam power cycle, the source of heat is the hot water from well. The heat...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A combined cycle power plant consists of two gas turbines; cach produces a net power of...

    A combined cycle power plant consists of two gas turbines; cach produces a net power of 160 MW, and a 70 MW steam power cycle. The combustion of the fuel in the combustion chamber produces hot gases at 1400°C. The hot gases leaving the gas turbines are used to generate steam through the heat recovery steam generator (Boiler). The hot gases enter the heat recovery steam generator at 880°C and leaves at 660°C. Water enters the isentropic pump as saturated...

  • 8.52 Figure P8.52 shows a vapor power cycle that provides process heat and produces power. The...

    8.52 Figure P8.52 shows a vapor power cycle that provides process heat and produces power. The steam generator produces vapor at 500 lbf/in., 800°F, at a rate of 8 x 10 lb/h. Eighty-eight percent of the steam expands through the turbine to 10 lbf/in.. and the remainder is directed to the heat exchanger. Saturated liquid exits the heat exchanger at 500 lbf/in.' and passes through a trap before entering the condenser at 10 lbf/in? Saturated liquid exits the condenser at...

  • Problem 4 In the vapor power cycle shown below, steam (H20) is the working fluid. Saturated...

    Problem 4 In the vapor power cycle shown below, steam (H20) is the working fluid. Saturated vapor enters the turbine at 100 bar and saturated liquid exits the condenser at a pressure of 0.1 bar. The net power output of the cycle, Weycle, is 150 MW. Isentropic efficiency of the turbine and the pump (n (hi-h2)/(h1-h2s), np=(h25-h1)/(h2-h1)) are both 80%. Determine the followings. [30 pts] (a) Thermal efficiency, n (b) Mass flow rate of the steam, m, in kg/s (c)...

  • 3. Figure P8.78 shows a vapor power cycle that provides process heat and produces power. The...

    3. Figure P8.78 shows a vapor power cycle that provides process heat and produces power. The steam generator produces vapor at 500 lbf/in2, 800°F, at a rate of 8x104 Ib/h. Eighty-eight percent of the steam expands through the turbine to 10 lbf/in.2 and the remainder is directed to the heat exchanger. Saturated liquid exits the heat exchanger at 500 lbf/in.* and passes through a trap before entering the condenser at 10 lbf/in.2 Saturated liquid exits the condenser at 10 lbf/in.2...

  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

  • A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop...

    A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power of 3 MW. Steam exits the reactor core at 100 bar, 52O degree C and expands through the turbine to the condenser pressure of 1 bar. Saturated liquid exits the condenser and is pumped to the reactor pressure of l00 bar. Isentropic efficiencies of the turbine and pump are 81% and 78%, respectively. Cooling water enters the condenser at 15 degree...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 700°C and the turbine exit pressure is 8 kPa. Saturated liquid enters the pump at 8 kPa. The heat transfer rate to the working fluid in the steam generator is 24 MW. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 18°C and exits at 36°C with no significant change in pressure. Determine...

  • SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed fee...

    SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed feedwater heater. Superheated steam enters the turbine with a mass flow rate of 120 kg/s at 16 MPa and 560°C (State 1). Some fraction of the steam is extracted at 40 bar (State 2) and is supplied to the closed feedwater heater. The remaining steam expands to a pressure of 3 bar (State 3), another fraction is extracted at this pressure, and is supplied to...

  • Problem 8.015 Water is the working fluid in a Rankine cycle. Steam exits the steam generator at 1500 lbf/in.2 and 1100℉ Due to heat transfer and frictional effects in the line connecting the steam ge...

    Problem 8.015 Water is the working fluid in a Rankine cycle. Steam exits the steam generator at 1500 lbf/in.2 and 1100℉ Due to heat transfer and frictional effects in the line connecting the steam generator and turbine, the pressure and temperature at the turbine inlet are reduced to 1400 Ibf/in.2 and 1000 , respectively. Both the turbine and pump have isentropic efficiencies of 95%. Pressure at the condenser inlet is 2 lbf/ in.2, but due to frictional effects the condensate...

  • 1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle...

    1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle and a simple Rankine cycle for the water vapor cycle. Atmospheric air enters the compressor at a rate of 88.2 lbm / s, at 14.7 psia and 59 ° F, and the maximum gas cycle temperature is 1,742 ° F. The pressure ratio in the compressor is 7. The isentropic efficiency of both the compressor and the turbine is 80%. Gas exits the heat...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT