Question

A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power of 3 MW. Steam exits the reactor core at 100 bar, 52O degree C and expands through the turbine to the condenser pressure of 1 bar. Saturated liquid exits the condenser and is pumped to the reactor pressure of l00 bar. Isentropic efficiencies of the turbine and pump are 81% and 78%, respectively. Cooling water enters the condenser at 15 degree C with a mass flow rate of 114.79 kg/s. Determine

(a) the thermal efficiency.

(b) the temperature of the cooling water exiting the condensor in degree C.

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

Add a comment
Know the answer?
Add Answer to:
A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

  • A power plant operates on the Rankine cycle and uses a nuclear reactor to generate the steam that enters the turbine

    A power plant operates on the Rankine cycle and uses a nuclear reactor to generate the steam that enters the turbine. The condenser receives cooling water from a chiller and discharges the used water to a nearby lake. Kinetic and potential effects are negligible. Stray heat transfer from the turbine, pump, and condenser can be neglected. Data are provided in the table for the system operating at steady state. 

  • 3. (40 pts) A steam power plant based on the Rankine cycle, shown in the below,...

    3. (40 pts) A steam power plant based on the Rankine cycle, shown in the below, operates to develop net cycle power. Saturated vapor at 8 bar enters the turbine where it expands to the condenser pressure of 1 bar. Water liquid exits the condenser 30 °C and 1 bar and it is pumped to the boiler pressure of 8 bar. Isentropic efficiencies of the turbine and pump are 80% and 60%. Assume kinetic and potential energies are negligible at...

  • Consider a power plant with water as the working fluid that operates on a Rankine cycle....

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

  • . A steam power plant that operates on Rankine cycle has a net power output of...

    . A steam power plant that operates on Rankine cycle has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500o C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a sea through the tubes of the condenser at rate of 2000 kg/s. Show the cycle on T‐s diagram with respect to saturation line, and determine (a) the thermal efficiency of the cycle, (b) the...

  • Thermo (25) 7. A steam power plant operates on the Rankine cycle with steam entering the...

    Thermo (25) 7. A steam power plant operates on the Rankine cycle with steam entering the high pressure turbine at 1500 psi, 1000'C with a mass flow rate of 5x10lb/hr. The steam exits the high pressure turbine at 90 psi, 350°F where the steam is then sent back to the boiler and reheated to 900°F before expanding through the low pressure turbine to 1 psi. Cooling water enters the condenser from a lake at 65°F and exits at 90°F Assume...

  • A steam power plant operates on the Rankine cycle modified to include superheat. The steam leaves...

    A steam power plant operates on the Rankine cycle modified to include superheat. The steam leaves the superheater at a pressure of 40 bar and a temperature of 500oC. After expansion in the turbine, which has an isentropic efficiency of 82%, the steam exhausts into the condenser at a pressure of 0.2 bar. Neglecting feed pump work calculate :- 1. The Thermal Efficiency of the plant. 2. The specific steam consumption. 3. The required mass flow rate of steam if...

  • Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 700°C and the turbine exit pressure is 8 kPa. Saturated liquid enters the pump at 8 kPa. The heat transfer rate to the working fluid in the steam generator is 24 MW. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 18°C and exits at 36°C with no significant change in pressure. Determine...

  • Consider a steam power plant that operates on a simple ideal Rankine cycle and has a...

    Consider a steam power plant that operates on a simple ideal Rankine cycle and has a net power output of 45 MW (Wnetout - Wtout - Wpin). Steam enters the isentropic turbine at 7 MPa and 500-C and is cooled in the condenser at a pressure of 10 kPa by running cooling water through the condenser (heat exchanger). Determine the following: (Note: Show the procedure of your solution for all parts) Boiler P3 7 MPa 3 T,-500 °C 2 Pump...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT