Question

A power plant operates on the Rankine cycle and uses a nuclear reactor to generate the steam that enters the turbine


A power plant operates on the Rankine cycle and uses a nuclear reactor to generate the steam that enters the turbine. The condenser receives cooling water from a chiller and discharges the used water to a nearby lake. Kinetic and potential effects are negligible. Stray heat transfer from the turbine, pump, and condenser can be neglected. Data are provided in the table for the system operating at steady state. 

image.png

1 0
Add a comment Improve this question Transcribed image text
Answer #1

following images shows calculations

here all required data taken from standard steam table

Add a comment
Know the answer?
Add Answer to:
A power plant operates on the Rankine cycle and uses a nuclear reactor to generate the steam that enters the turbine
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop...

    A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power of 3 MW. Steam exits the reactor core at 100 bar, 52O degree C and expands through the turbine to the condenser pressure of 1 bar. Saturated liquid exits the condenser and is pumped to the reactor pressure of l00 bar. Isentropic efficiencies of the turbine and pump are 81% and 78%, respectively. Cooling water enters the condenser at 15 degree...

  • . A steam power plant that operates on Rankine cycle has a net power output of...

    . A steam power plant that operates on Rankine cycle has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500o C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a sea through the tubes of the condenser at rate of 2000 kg/s. Show the cycle on T‐s diagram with respect to saturation line, and determine (a) the thermal efficiency of the cycle, (b) the...

  • Question 16 A steam power plant operates on a Rankine cycle. The steam enters the turbine...

    Question 16 A steam power plant operates on a Rankine cycle. The steam enters the turbine at 10,000 kPa and 580'C. It is condensed in the condenser at 6 kPa. The isentropic efficiencies of the pump and turbine are 95% and 94% respectively. Determine the following Properties: h1 = 151.53 kJ/kg, n 1-0.0010064 m g . h3 - 3573.7 kJ/kg, X ds = 0.8097 hg. 4 2416.62 kJ/kg a. Work input to the pump in (kJ/kg) b. Heat added in...

  • A steam power plant operates on the reheat Rankine cycle. Steam enters the high-pressure turbine at...

    A steam power plant operates on the reheat Rankine cycle. Steam enters the high-pressure turbine at 12.5 MPa and 5508C at a rate of 7.7 kg/s and leaves at 2 MPa. Steam is then reheated at constant pressure to 400 C before it expands in the low-pressure turbine. Steam leaves the condenser as a saturated liquid. The exit of the turbine is saturated at the condenser pressure (a) the condenser pressure, (b) the net power output, and (c) the thermal...

  • Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters...

    Water is the working fluid in an ideal Rankine cycle with reheat. Superheated vapor enters the turbine at 8 MPa, 480℃, and the condenser pressure is 8 kPa. Steam expands through the first stage turbine to 700 kPa and then is reheated to 480℃. Assumptions: see problem 1 . Determine for the cycle(a) the rate of heat addition, in kJ per kg to the working fluid in the steam generator.(b) the thermal efficiency.(c) the rate of heat transfer from the...

  • Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...

    Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Assume an isentropic efficiency of 85 percent for both the turbine and the pump. (a) the quality of the steam at the turbine exit (b) the thermal efficiency of the cycle (c) the mass flow rate of the steam.

  • Thermo (25) 7. A steam power plant operates on the Rankine cycle with steam entering the...

    Thermo (25) 7. A steam power plant operates on the Rankine cycle with steam entering the high pressure turbine at 1500 psi, 1000'C with a mass flow rate of 5x10lb/hr. The steam exits the high pressure turbine at 90 psi, 350°F where the steam is then sent back to the boiler and reheated to 900°F before expanding through the low pressure turbine to 1 psi. Cooling water enters the condenser from a lake at 65°F and exits at 90°F Assume...

  • Consider a steam power plant that operates on a simple ideal Rankine cycle and has a...

    Consider a steam power plant that operates on a simple ideal Rankine cycle and has a net power output of 45 MW (Wnetout - Wtout - Wpin). Steam enters the isentropic turbine at 7 MPa and 500-C and is cooled in the condenser at a pressure of 10 kPa by running cooling water through the condenser (heat exchanger). Determine the following: (Note: Show the procedure of your solution for all parts) Boiler P3 7 MPa 3 T,-500 °C 2 Pump...

  • Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed...

    Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 3508C; and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and the heat...

  • Consider a power plant with water as the working fluid that operates on a Rankine cycle....

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT