Question

(b) Suppose that a particle of mass m travels along a path r(t) with velocity t) according to Newtons second law, F(t)ma(t), where a-is the acceleration. Then the angular momentum C of the particle about the origin is defined as while the torque of the force F about the origin is Show that the rate of change of the angular momentum is given by C()-T What happens to the momentum if the force F is a central force field, .e., if the force always points directly towards or away from the origin?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
(b) Suppose that a particle of mass m travels along a path r(t) with velocity t)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • #1 A particle of mass, m, moves along the path with its coordinates given as functions...

    #1 A particle of mass, m, moves along the path with its coordinates given as functions of time: x=x, +at?, y = bt, z=ct, where xq, a,b,c are constants. Find angular momentum of this particle with respect to the origin, force acting on this particle and torque acting on this particle with respect to the origin as functions of time. Verify that your results satisfy Newton's second de law for rotation, which is " =FxF.

  • A particle P with mass 5 kg has position vector r(r = 7.0 m) and velocity...

    A particle P with mass 5 kg has position vector r(r = 7.0 m) and velocity v(v = 5.0 m/s) as shown in the figure. It is acted on by force F(f = 8.0 N). All three vectors is in the xy plane. About the origin, what is the z-component of the angular momentum of the particle? About the origin, what is the z-component of the torque acting on the particle? About the origin, what is the z-component of the...

  • A particle travels along a straight line with a velocity v=(12-3t2) m/s, where t is in...

    A particle travels along a straight line with a velocity v=(12-3t2) m/s, where t is in seconds. When t=1s, the particle is located 10m to the left of the origin. Determine the acceleration when t=4s, the displacement from t=0 to t=10s, the distance the particle travels during this time period.

  • A particle travels along the circular path x2 +y-r, when the time t = 0 the...

    A particle travels along the circular path x2 +y-r, when the time t = 0 the particle it's at-r meter and y =0 m. If the y components of the particle's velocity is Vy 2r cos2t, determine: (a) the x and y components of its acceleration at any instant. (b) Draw the trajectory with the vector velocity and acceleration at t = π/4 sec. (c) calculate the average vector velocity between 0 and t/4 sec. (d) the distance travelled when...

  • There is an object, which moves in a circular path with radius of 0.367 m and...

    There is an object, which moves in a circular path with radius of 0.367 m and angular acceleration of 0.12 rad/s a) If the object starts at rest find the time required to get angular velocity of 1.52 rad/s? (2 points) b) Find net linear acceleration of the object at the time of angular velocity of 1.32 rad/s? (4 points) At a particular instant, a 1.5 kg particle's position is r = (21-4j+6k)m, its velocity is Y = (-3i+5j +2k)...

  • At time t = 0, a 4.0 kg particle with velocity v = (5.0 m/s) i...

    At time t = 0, a 4.0 kg particle with velocity v = (5.0 m/s) i - (6.0 m/s) j is at x = 6.0 m, y = 5.0 m. It is pulled by a 2.0 N force in the negative x direction. What is the angular momentum of the particle about the origin? (Express your answer in vector form.) What torque about the origin acts on the particle? (Express your answer in vector form.) At what rate is the...

  • F12-18. A particle travels along a straight-line path y 0.5x. If the x component of the...

    F12-18. A particle travels along a straight-line path y 0.5x. If the x component of the particle's velocity is vr= (2) m/s, where t is in seconds, determine the magnitude of the particle's velocity and acceleration when = 4 s. y =0.5x Prob. F12-18 F12-19. A particle is traveling along the parabolic path y 0.25x. If x 8 m. , 8 m/s, and a, 4 m/s2 when 2 s. determine the magnitude of the particle's velocity and acceleration at this...

  • A particle travels counterclockwise along a circular path of radius R with a linear velocity V....

    A particle travels counterclockwise along a circular path of radius R with a linear velocity V. Assume that V = constant-10m /s, R-10m, θ-450 For the specified coordinate O-xy system as shown in the figure below determine the velocity and acceleration components in the corresponding Cartesian, polar, and tangential and normal coordinate systems, respectively, at the position and also the magnitude and direction of the velocity and acceleration vectors You may summarize your results in the following table. Coordinate Components...

  • An object travels along the sinusoidal path defined by the y sin(0.5(rad/m) x). If the component...

    An object travels along the sinusoidal path defined by the y sin(0.5(rad/m) x). If the component of velocity along the x axis is t? m/s where t is in seconds, determine the objects distance from the origin O and its acceleration when t- 1.5 s. When t 0,x-O,y-0

  • parts a through e please with work. A particle travels along the circular path x2 +y-r,...

    parts a through e please with work. A particle travels along the circular path x2 +y-r, when the time t = 0 the particle it's at-r meter and y =0 m. If the y components of the particle's velocity is Vy 2r cos2t, determine: (a) the x and y components of its acceleration at any instant. (b) Draw the trajectory with the vector velocity and acceleration at t = π/4 sec. (c) calculate the average vector velocity between 0 and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT