Question

An industrial load is modeled as a series combination of an inductor and a resistance as shown in given schematic. Calculate

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Q) R I Z net (R+ 5 Wh) || (c) (R+ SWL) (A/wc) Rt awht ! Iwc R+JWL Rt OWL Iwc (1-w²LC & SWRC) IWRC & 3² w²LC & I Iwc Rt IWL (1

Add a comment
Know the answer?
Add Answer to:
An industrial load is modeled as a series combination of an inductor and a resistance as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Hi! I am doing this problem, and I still getting wrong answers. Please, can you explain...

    Hi! I am doing this problem, and I still getting wrong answers. Please, can you explain this in detail? Thank you An industrial load is modeled as a series combination of an inductor and a resistance as shown in the given figure. Calculate the value of a capacitor C across the series combination so that the net impedance is resistive at a frequency of 8 kHz. > 1022 35 mH The value of a capacitor C is 7.9 NF.

  • An LC circuit consists of a 3.10 mH inductor and a 5.07 uF capacitor. (a) Find...

    An LC circuit consists of a 3.10 mH inductor and a 5.07 uF capacitor. (a) Find its impedance at 60.8 Hz. (b) Find its impedance at 11.6 kHz. Ω (C) Now a 36.6 12 resistor is added in series with the inductor and capacitor. Find the impedance of this RLC circuit at 60.8 Hz and 11.6 kHz. At 60.8 Hz At 11.6 kHz (d) Compare the values of Z in parts (a) and (b) with those found in part (c),...

  • An RLC series circuit has a 1.00 kQ resistor, a 135 mH inductor, and a 25.0...

    An RLC series circuit has a 1.00 kQ resistor, a 135 mH inductor, and a 25.0 nF capacitor. Find the circuit's impedance (in Q) at 500 Hz (a) 12276 (b) Find the circuit's impedance (in ) at 7.50 kHz. 7854 If the voltage source has Vrms (c) = 408 V, what is Irms (in mA) at each frequency? mA (at 500 Hz) mA (at 7.50 kHz) (d) What is the resonant frequency (in kHz) of the circuit? kHz (e) What...

  • An RLC series circuit has a 1.00 k Ohm resistor, a 155 mH inductor, and a...

    An RLC series circuit has a 1.00 k Ohm resistor, a 155 mH inductor, and a 25.0 nF capacitor. (a) Find the circuit's impedance at 525 Hz. Ohm (b) Find the circuit's impedance at 7.50 kHz. Ohm (c) If the voltage source has V_rms = 408 V, what is I_rms at each frequency? mA (at 525 Hz) mA (at 7.50 kHz) (d) What is the resonant frequency of the circuit? kHz (e) What is I_rms resonance? mA

  • 1) An RLC series circuit has a 40.0 ? resistor, a 3.00 mH inductor, and a...

    1) An RLC series circuit has a 40.0 ? resistor, a 3.00 mH inductor, and a 5.00 ?F capacitor a. Find the circuit's impedance at 60.0 Hz and 10.0 kHz b. If the voltage source has Vrms 120 V, what is Irms at each frequency? c. Find the resonant frequency d. Calculate Irms at resonant frequency, if the voltage source is Vrms-120v e. Calculate the power factor and phase angle at 60.0 Hz

  • An RLC series circuit has a 1.00 kΩ resistor, a 150 mH inductor, and a 25.0...

    An RLC series circuit has a 1.00 kΩ resistor, a 150 mH inductor, and a 25.0 nF capacitor. (a) Find the circuit's impedance (in Ω) at 505 Hz. (b) Find the circuit's impedance (in Ω) at 7.50 kHz. (c) If the voltage source has Vrms = 408 V, what is Irms (in mA) at 505 Hz and 7.5 Hz? (d) What is the resonant frequency (in kHz) of the circuit? (e) What is Irms (in mA) at resonance?

  • A 68 Ω resistor, an 8.6 μF capacitor, and a 36 mH inductor are connected in...

    A 68 Ω resistor, an 8.6 μF capacitor, and a 36 mH inductor are connected in series in an ac circuit. Part A: Calculate the impedance for a source frequency of 300 Hz. Part B: Calculate the impedance for a source frequency of 30.0 kHz. Express your answers to two significant figures and include the appropriate units.

  • In a radio frequency circuit, a resistance of 1752 Ω serves as a load at the...

    In a radio frequency circuit, a resistance of 1752 Ω serves as a load at the end of a 50 Ω transmission line. We wish to connect an inductor, L, in series to the input of the line so that a source with an output impedance of 50 Ω does not see reflections. No need to know the frequency to solve the problem (a) Determine the minimum length of the transmission line in terms of wavelengths. (b) Determine the value...

  • Function Generatr Inductor Model Ra R, Figure 1 Series RLC Circuit Preliminary This laboratory wi...

    Function Generatr Inductor Model Ra R, Figure 1 Series RLC Circuit Preliminary This laboratory will demonstrate how varying resistance changes the natural response of a series RLC circuit (Fig. 1). The function generator is modeled as an ideal voltage source v(t) 5 u() V in series with source resistance Rs-50Q. After measurements using an LCR meter, the inductor is modeled as an ideal L 90 mH inductor in series with resistance RL-20Q. The capacitance is C-0.22 μF. 1) Calculate the...

  • A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50...

    A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50 uF, and a source with AV = 240 V operating at 50.0 Hz. The max maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance. The inductive reactance depends on the value of the inductance and the frequency of the source. Q (b) Calculate the capacitive reactance. (c) Calculate the impedance. kn (d) Calculate the resistance in the circuit. kn. (e)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT