Question

The compound beam is subjected to a uniform dead load of 200 lb/ft and a uniform live load of 150 lb/ft. Assume Bis a pin and
0 0
Add a comment Improve this question Transcribed image text
Answer #1

draw influence line diagram for Shear at D ni+22=1 ny Fut and mal 29 nz 11 slu sin so, nicm so , on hence 2LD will be, 350 lb

Feel free to ask for further clarification.

please up-vote if you liked this solution. As it will encourage me to solve more and more problems and help students.

Thank you,

Add a comment
Know the answer?
Add Answer to:
The compound beam is subjected to a uniform dead load of 200 lb/ft and a uniform...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • PartA The compound beam shown in (Figure 1) is subjected to a uniform dead load of...

    PartA The compound beam shown in (Figure 1) is subjected to a uniform dead load of 300 lb/ft and a single live load of 2 k. Assume C is a fixed support, B is a pin, and A is a roller Determine the negative bending moment with the maximum magnitude created by these loads at C Express your answer using three significant figures (Mc)max(-) k ft Figure 1 of 1 Submit uest Answer Part B Determine the negative shear with...

  • Up ompound beam is subjected to a uniform dead load of 200 lb/ft and a uniform...

    Up ompound beam is subjected to a uniform dead load of 200 lb/ft and a uniform live load of 150 lb/ft. ermine (a) the maximum negative moment these loads develop at A, and (b) the maximum positive Shear these loads develop at D. Assume B is a hinge. El = constant. S: Live loads may be placed on any segment on the beam to maximize a function. Also, take advantage of the influence lines. There is load no point A...

  • Part A A uniform live load of 250 lb/ft and a single live concentrated force of...

    Part A A uniform live load of 250 lb/ft and a single live concentrated force of 1700 lb are to be placed on the beam. The beam has a weight of 150 lb/ft. Assume the support at A is a pin and B is a roller. Follow the sign convention. (Figure 1) Determine the maximum vertical reaction at support B Express your answer using three significant figures. (By) max(t) SubmitP ous Answers Request Answer XIncorrect: Try Again; 5 attempts remaining...

  • Please show work and write clearly. Thank you. 6-21. The compound beam is subjected to a...

    Please show work and write clearly. Thank you. 6-21. The compound beam is subjected to a uniform dead load of 200 lb/ft and a uniform live load of 150 lb/ft. Determine (a) the maximum negative moment these loads develop at A, and (b) the maximum positive shear at D Assume B is a pin and C is a roller. 5ft . Prob. 6-21

  • A uniform live load of 350 lb/ft and a single live concentrated force of 1700 lb...

    A uniform live load of 350 lb/ft and a single live concentrated force of 1700 lb are to be placed on the beam. The beam has a weight of 150 lb/ft. Assume the support at A is a pin and B is a roller. Follow the sign convention. (Figure 1) Determine the Max vertical reaction at support B. Determine the negative bending moment at point B with the max magnitude. m ive laad of 350b/ft and a single Ivs concantratcd...

  • Q3) A simply supported beam is subjected to a uniform service dead load of 2.3 kips/ft...

    Q3) A simply supported beam is subjected to a uniform service dead load of 2.3 kips/ft (excluding the weight of the beam), a uniform service live load of 3.0 kips/ft. The beam is 30 feet long, and deflection not to exceed L/360. The beam has continuous lateral support, and A992 steel is used. Is a W27 x 84 adequate?

  • Q1. The beam supports a uniform dead load of 500 N/m and single live concentrated force...

    Q1. The beam supports a uniform dead load of 500 N/m and single live concentrated force of 3000 N. Determine (a) the maximum positive moment that can be developed at point C, and (b) the maximum positive shear that can be developed at point C. Assume the support at A is a pin and B is a roller. 1. The beam supports a uniform dead load of 500 N/m and single live concentrated force of 3000 N. Determine (a) the...

  • This is an influence line question, please use that to solve for the max negative moment...

    This is an influence line question, please use that to solve for the max negative moment and shear. Thank you! KAssignment 8 (Influence Lines, Values, 2 questions, 6 marks inc. 2 bonus marks) Problem 6.20 Part A The compound beam shown in (Figure 1) is subjected to a uniform dead load of 350 lb/ft and a single live load of 5 k. Assume C is a fixed support, B is a pin, and A is a roller Determine the negative...

  • Consider the beam subjected to a concentrated load consisting of 2.25 kips of dead load and...

    Consider the beam subjected to a concentrated load consisting of 2.25 kips of dead load and 5.55 kips of live load at point B. Find maximum factored beam shear, moment, and deflection. Consider the beam and loading given below. The beam is subjected to a concentrated load consisting of 2.25 kips of dead load and 5.55 kips of live load at point B. Neglect beam weight. You may use any information from the AISC Manual, a) Draw the general shape...

  • The beam is supporting a distributed load of w 840 lb/ft 60* 3ft 30 6ft Part...

    The beam is supporting a distributed load of w 840 lb/ft 60* 3ft 30 6ft Part A Determine the magnitudes of the resultant internal loadings acting on section b b through the centroid C on the beam separated by commas, to three significant figures Express your answers, Pat A Determine the magnitudes of the resultant internal loadings acting on section b-b through the centroid C on the beanks Express your answers, separated by commas, to three significant figures. να ΑΣφ...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT