Question

Consider the beam subjected to a concentrated load consisting of 2.25 kips of dead load and 5.55 kips of live load at point B. Find maximum factored beam shear, moment, and deflection.

Consider the beam and loading given below. The beam is subjected to a concentrated load consisting of 2.25 kips of dead load

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1 Pu= 11.58K B Factoned loads:- Å pu= 1.2 PL+1.6 PLL ! -1: 2 X2.25+1,6x[5.55) **? = 11.58 kips t Supposit reactions S.F.D RA

Add a comment
Know the answer?
Add Answer to:
Consider the beam subjected to a concentrated load consisting of 2.25 kips of dead load and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The beam shown below is subjected to a uniform load of 2 kips/ft, two concentrated transverse...

    The beam shown below is subjected to a uniform load of 2 kips/ft, two concentrated transverse loads of 12 kips, and 6 kips, and a tensile axial force of 10 kips. a) Draw the shear and moment diagrams. (8) b) Find the stresses at B. (10) c) Find the maximum shearing stress in the beam. (10) 12 kips 2 k/ft 6 kips 10 kips 4 41 8' A B D E 12" 2" 2 14" B 24 16"

  • Up ompound beam is subjected to a uniform dead load of 200 lb/ft and a uniform...

    Up ompound beam is subjected to a uniform dead load of 200 lb/ft and a uniform live load of 150 lb/ft. ermine (a) the maximum negative moment these loads develop at A, and (b) the maximum positive Shear these loads develop at D. Assume B is a hinge. El = constant. S: Live loads may be placed on any segment on the beam to maximize a function. Also, take advantage of the influence lines. There is load no point A...

  • roof A beam is part of the framing system for the floor of an office building....

    roof A beam is part of the framing system for the floor of an office building. The floor is subjected to both dead loads and live loads. The maximum moment caused by the service dead load is 45 ft-kips, and the maximum moment for the service live load is 63 ft-kips (these moments occur at the same location on the beam and can therefore be combined). 2-3 a. If load and resistance factor desig n is used, determine the maximum...

  • Q3) A simply supported beam is subjected to a uniform service dead load of 2.3 kips/ft...

    Q3) A simply supported beam is subjected to a uniform service dead load of 2.3 kips/ft (excluding the weight of the beam), a uniform service live load of 3.0 kips/ft. The beam is 30 feet long, and deflection not to exceed L/360. The beam has continuous lateral support, and A992 steel is used. Is a W27 x 84 adequate?

  • The frame below has wind load and dead as shown. Use w(Dead) = 6 kip/ft and...

    The frame below has wind load and dead as shown. Use w(Dead) = 6 kip/ft and w(Live) = 3 kip/ft, L = 30 ft and H = 15 ft. The beams and columns have modulus of elasticity E of 29000 ksi and moment of inertias I(beam) = 2000 in4 and I(column) = 800 in4. Similarly they have cross-sectional areas A(beam) = 20 in2 and A(column) = 25 in2. Consider that the wind can act in both horizontal directions. Determine: The...

  • The Beam shown will be subjected to a concentrated live load of 100kN, a uniformly distributed...

    The Beam shown will be subjected to a concentrated live load of 100kN, a uniformly distributed live load of 50kN/m and a uniformly distributed dead load of 20kN/m. 45.) determine the maximum reaction at B 46.) determine the maximum positive shear at C 47.) determine the maximum negative moment at B The beam shown will be subjected to a concentrated live load of 100 KN, a uniformly distributed live load of 50 kN/m and a uniformly distributed dead load of...

  • A simply supported beam as shown in the figure. The beam section is W18x211. The beam...

    A simply supported beam as shown in the figure. The beam section is W18x211. The beam must support its own weight and must carry the following loading: Super-imposed distributed dead load = 0.25 kip/ft Distributed live load = 1 kip/ft Concentrated dead load = 12 kip The beam span L = 26 ft and the distance of the concentrated load from the right support a=6 ft. Consider analy- sis of beam subjected to load combination 1.2 dead + 1.6 live....

  • PartA The compound beam shown in (Figure 1) is subjected to a uniform dead load of...

    PartA The compound beam shown in (Figure 1) is subjected to a uniform dead load of 300 lb/ft and a single live load of 2 k. Assume C is a fixed support, B is a pin, and A is a roller Determine the negative bending moment with the maximum magnitude created by these loads at C Express your answer using three significant figures (Mc)max(-) k ft Figure 1 of 1 Submit uest Answer Part B Determine the negative shear with...

  • The T-beam shown in Figure 1 supports the un-factored dead load of 1.4 kips/ft and live...

    The T-beam shown in Figure 1 supports the un-factored dead load of 1.4 kips/ft and live load of 1.5 kips/ft. The dead load does not include the self-weight of the beam. The material properties are as follows: fc’=3000 psi; fy=60,000 psi. Design the shear reinforcement (stirrups). Plot the stirrups distribution along the span of the beam. DL= 1.4 kips/ft ; L2=1.5 kips/Ft * 75 Sz=7 X * b=3616. hr-6in k ) انا امه hw-lain + * bw=12 in

  • Q1. The beam supports a uniform dead load of 500 N/m and single live concentrated force...

    Q1. The beam supports a uniform dead load of 500 N/m and single live concentrated force of 3000 N. Determine (a) the maximum positive moment that can be developed at point C, and (b) the maximum positive shear that can be developed at point C. Assume the support at A is a pin and B is a roller. 1. The beam supports a uniform dead load of 500 N/m and single live concentrated force of 3000 N. Determine (a) the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT