Question

Problems 2 through 6 below are to be considered with reference to an Ideal Brayton Cycle with the following operating paramet
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Brayton cycle comp. combustion Twritine) I chamber F US Brayton cycle with turbine and compr efficiency. T= 3ook T3 = 1250k PWnet/ in = 1.005 (1250 - 725.64) - 1.005( 591.15-300) Whet = 526.98 - 292.6 Wnet = 234.37 kJ / kg © Cycle Thermal EfficiencyI have solved all the three parts by taking the assumptions into consideration of specific heats and compressor and turbine efficiencies . I have written all the formulas that I have used so that you can understand the solution easily and also use them for future reference.

Hope you like the solution. Thank you.

Add a comment
Know the answer?
Add Answer to:
Problems 2 through 6 below are to be considered with reference to an Ideal Brayton Cycle...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A Brayton cycle operates with air with minimum and maximum temperatures of 27 ºC and 727...

    A Brayton cycle operates with air with minimum and maximum temperatures of 27 ºC and 727 ºC. It is designed so that the maximum cycle pressure is 2000 kPa and the minimum cycle temperature is 100 kPa. The isentropic efficiencies of the turbine and compressor are both 90 percent. Using constant room-temperature specific heats, (a) determine the net work produced per unit mass of air each time this cycle is executed, in kJ/kg. (b) Determine the cycle's thermal efficiency. Remember...

  • A simple ideal Brayton cycle has a pressure ratio of 6. The working fluid enters the...

    A simple ideal Brayton cycle has a pressure ratio of 6. The working fluid enters the compressor at a pressure of 100 kPa and a temperature of 300 K. The temperature at the end of the combustion process is 1273 K. Applying the cold air-standard assumption: a) Draw the P-v and T-s process diagrams for the cycle. b) Calculate the specific compressor and turbine work. c) Determine the thermal efficiency of the cycle.

  • A simple Ideal Brayton cycle operates with air with minimum and maximum temperatures of 27C and...

    A simple Ideal Brayton cycle operates with air with minimum and maximum temperatures of 27C and 727°C. It is designed so that the. maximum cycle pressure is 2000 kPa and the minimum cycle pressure is 100 kPa. The isentropic efficiency of the turbine is 78 percent. Determine the network produced per unit mass of air each time this cycle is executed and the cycle's thermal efficiency Use constant specific heats at room temperature. The properties of air at room temperature...

  • Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with...

    Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetric flow rate of 7.5 m3/s. The compressor pressure ratio is 10. The turbine inlet temperature is 1400 K. Determine the following: The thermal efficiency of the cycle The back work ratio The net power developed in kW

  • An ideal Brayton power generation cycle draws in air at 100 kPa and 20 °C. The...

    An ideal Brayton power generation cycle draws in air at 100 kPa and 20 °C. The compressor increases the pressure to 500 kPa. The burner adds heat equal to 500 kJ/kg. You can use air standard analysis and assume constant specific heats. (a) (5 pts) find the temperature after the compressor (b) (5 pts) find the specific compressor work (c) (5 pts) find the temperature after the burner (d) (5 pts) find the turbine work (e) (5 pts) find the...

  • 8. An ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 250...

    8. An ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 250 K and 25 kPa. The compressor pressure ratio is 10. The turbine inlet temperature is 1800 K. For the cycle: (a) the heat addition and work done in each process, in kJ/kg, (b) the thermal efficiency (c) the back work ratio

  • 8. An ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 250...

    8. An ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 250 K and 25 kPa. The compressor pressure ratio is 10. The turbine inlet temperature is 1800 K. For the cycle: (a) the heat addition and work done in each process, in kJ/kg, (b) the thermal efficiency (c) the back work ratio

  • An ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 250 K...

    An ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 250 K and 25 kPa. The compressor pressure ratio is 10. The turbine inlet temperature is 1800 K. For the cycle: (a) the heat addition and work done in each process, in kJ/kg, (b) the thermal efficiency (c) the back work ratio

  • A simple ideal Brayton cycle operates with air with minimum and maximum temperatures of 27°C and...

    A simple ideal Brayton cycle operates with air with minimum and maximum temperatures of 27°C and 727°C. It is designed so that the maximum cycle pressure is 2000 kPa and the minimum cycle pressure is 100 kPa. The isentropic efficiency of the turbine is 96 percent. Determine the net work produced per unit mass of air each time this cycle is executed and the cycle’s thermal efficiency. Use constant specific heats at room temperature. The properties of air at room...

  • 2. Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K,...

    2. Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetnc flow rate of 20 m'/s. The turbine inlet temperature is 1500 K. For compressor pressure ratios of 20 find a) the heat addition and rejection in kW b) the net power developed, in kW c) the thermal efficiency of the cycle d) the back work ratio.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT