Question

A simple ideal Brayton cycle has a pressure ratio of 6. The working fluid enters the...

A simple ideal Brayton cycle has a pressure ratio of 6. The working fluid enters the compressor at a pressure of 100 kPa and a temperature of 300 K. The temperature at the end of the combustion process is 1273 K. Applying the cold air-standard assumption:
a) Draw the P-v and T-s process diagrams for the cycle.
b) Calculate the specific compressor and turbine work.
c) Determine the thermal efficiency of the cycle.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A simple ideal Brayton cycle has a pressure ratio of 6. The working fluid enters the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. Air is used as the working fluid in a simple ideal Brayton cycle that has...

    3. Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet temperature of 1000 K. Determine the required mass flow rate of air for a net power output of 90 MW. Assume constant specific heats at room temperature.

  • A simple Brayton cycle using air as the working fluid has a pressure ratio of 10....

    A simple Brayton cycle using air as the working fluid has a pressure ratio of 10. The minimum and maximum temperatures in the cycle are 295 and 1240K. Assuming an isentropic efficiency of 83 percent for the compressor and 87 percent for the turbine. Determine the second law efficiencies of the compressor, the turbine, and the combustion chamber.

  • Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with...

    Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetric flow rate of 7.5 m3/s. The compressor pressure ratio is 10. The turbine inlet temperature is 1400 K. Determine the following: The thermal efficiency of the cycle The back work ratio The net power developed in kW

  • Air enters the compressor of a cold air-standard Brayton cycle at 100 kpa, 300 k, with...

    Air enters the compressor of a cold air-standard Brayton cycle at 100 kpa, 300 k, with a mass flow rate of 6 kg/s. the compressor pressure ratio is 10, and the turbine inlet temperature is 1400 K. For k = 1.4, calculate a. The thermal efficiency of the cycle b. The back work ratio c. The net power developed, in kW d. Reconsider the above with an ideal regenerator.

  • An ideal Brayton cycle with regeneration is shown below. Note that from 1 to 6, there...

    An ideal Brayton cycle with regeneration is shown below. Note that from 1 to 6, there is a heat rejection process. The pressure ratio is 10 and the inlet to the compressor is at 300 K and 100 kPa. The maximum temperature is 1100 K. Use air as the working fluid, and assume constant properties evaluated at 300 K.   (a) Find the net work output and the cycle efficiency assuming the effectiveness of the regenerator is 100% (b) Plot the...

  • 2. Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K,...

    2. Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetnc flow rate of 20 m'/s. The turbine inlet temperature is 1500 K. For compressor pressure ratios of 20 find a) the heat addition and rejection in kW b) the net power developed, in kW c) the thermal efficiency of the cycle d) the back work ratio.

  • thermodynamic question.please just solve 9-84 9-82 A simple Brayton cycle using air as the working fluid has a pressure ratio of 10. The minimum c and maximum temperatures in the cycle are 295 an...

    thermodynamic question.please just solve 9-84 9-82 A simple Brayton cycle using air as the working fluid has a pressure ratio of 10. The minimum c and maximum temperatures in the cycle are 295 and 1240 K. Assuming an isentropic efficiency of 83 percent for the com pressor and 87 percent for the turbine, determine (a) the air temperature at the turbine exit, (b) the net work output, and (c) the thermal efficiency. 9-84 Repeat Prob. 9-82 using constant specific heats...

  • A simple ideal Brayton cycle operates with air with minimum and maximum temperatures of 27°C and...

    A simple ideal Brayton cycle operates with air with minimum and maximum temperatures of 27°C and 727°C. It is designed so that the maximum cycle pressure is 2000 kPa and the minimum cycle pressure is 100 kPa. The isentropic efficiency of the turbine is 96 percent. Determine the net work produced per unit mass of air each time this cycle is executed and the cycle’s thermal efficiency. Use constant specific heats at room temperature. The properties of air at room...

  • Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300...

    Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300 K, with a volume flow rate of 5 m3/s. The compressor pressure ratio is 8, and the turbine inlet temperature is 1400 K. The turbine and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For the air, k = 1.4 and the ambient temperature is T0 = 300 K. -Determine the thermal efficiency of the cycle. -determine the back...

  • Brayton Cycle

    Air enters the compressor of an ideal air standard Brayton cycle at 100 kPa, 300 K, with  a volumetric flow rate of 5 m3/s. The compressor pressure ratio is 10. The turbine inlet  temperature is 1400 K. Which of the following is the back work ratio if the efficiency of  the turbine and compressor is 80%?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT