Question

A block of mass m1= 4.00 kg moves on the surface of a horizontal table. The coefficient of kinetic friction k between the table top and m1 is equal to 0.350. Block 2 of mass m2= 2.00 kg is tied to m1 via a string that passes over a frictionless, massless pulley. The two blocks start from rest and m2 drops by a distance L =1.75 m to the floor.

Use the work-energy theorem to determine the speed v of the blocks when m2 reaches the floor.

FN mig m2g

0 0
Add a comment Improve this question Transcribed image text
Answer #1

FN the coetkient ot kinche friehow between m and table s o 35 1m MFN we consider marthas the aystem. There i no entemal tore

Add a comment
Know the answer?
Add Answer to:
A block of mass m1= 4.00 kg moves on the surface of a horizontal table. The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are...

    A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. These blocks are allowed to move on a fixed block-wedge of angle e 30.0°. The coefficient of kinetic friction is 0.360 for both blocks. Draw free-body diagrams of both blocks and of the pulley. M, R Mig...

  • A 29.3 kg block m1 is on a horizontal surface, connected to a 5.70 kg block...

    A 29.3 kg block m1 is on a horizontal surface, connected to a 5.70 kg block m2by a massless string as shown in the Figure. The pulley is massless and frictionless. A force of 203.3 N acts on m1 at an angle of 29.7o. The coefficient of kinetic friction between m1 and the surface is 0.225. Determine the upward acceleration of m2. ml m2

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

  • A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless...

    A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 4.7 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.7 m. How much work is done by the normal force on m1? What is the final speed of the two blocks? What is the tension in the string as the block falls? The work done...

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 23.0 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.30. (Assume gravity acts toward the +ydirection and the +x-axis is parallel to the surface and to the right.) (a) What is...

  •  A mass m1 = 4.3 kg rests on a frictionless table and connected by a massless...

     A mass m1 = 4.3 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 3.4 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.87 m. 1-How much work is done by gravity on the two block system? 2) How much work is done by the normal force on m1? 3) What is the final speed of the two blocks? 4)...

  • Incorrect Question 8 0/5 pts A mass m1 = 77-kg block sitting on a frictionless table...

    Incorrect Question 8 0/5 pts A mass m1 = 77-kg block sitting on a frictionless table is connected to a hanging mass m2 = 32-kg block through a string and a pulley as shown below. If the pulley is massless, what is the magnitude of the acceleration, in m/s2, of both blocks? Take the acceleration due to gravity as 9.80 m/s2. Use the equations given below to find a. Please round your answer to two decimal places. m Equations: T...

  • A block of mass m1 = 1.95 kg and a block of mass m2 = 5.50...

    A block of mass m1 = 1.95 kg and a block of mass m2 = 5.50 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. A wedge in the shape of a right trapezoid...

  • A mass, m1 = 5.47 kg, resting on a frictionless horizontal table is connected to a...

    A mass, m1 = 5.47 kg, resting on a frictionless horizontal table is connected to a cable that passes over a pulley and then is fastened to a hanging mass, m2 = 12.67 kg, as in the figure. When we release the mass m1, it accelerates across the table. Find (a) the acceleration (m/s2 ) of the masses and (b) the tension (N) in the cable. Neglect the mass of the cable and pulley.

  • A mass m1 = 5.7 kg rests on a frictionless table and connected by a massless...

    A mass m1 = 5.7 kg rests on a frictionless table and connected by a massless string to another mass m2 = 5.8 kg. A force of magnitude F = 44 N pulls m1 to the left a distance d = 0.89 m. How much work is done by the force F on the two block system? How much work is done by the normal force on m1 and m2? What is the final speed of the two blocks? How...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT