Question

A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are connected by a massless string over a pulley in the shape of a
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Alright Dude, If that worked for you... dont forget to give THUMBS UP.(that will work for me!)
Please Vote...
If I missed something feel free to leave a comment.
atleast before giving downvote.
and, Thanks for using homeworklib- Smarter way to study.

Add a comment
Know the answer?
Add Answer to:
A block of mass m1 1.80 kg and a block of mass m2 5.55 kg are...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m1 = 1.95 kg and a block of mass m2 = 5.50...

    A block of mass m1 = 1.95 kg and a block of mass m2 = 5.50 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. A wedge in the shape of a right trapezoid...

  • A block of mass m1 = 1.90 kg and a block of mass m2 = 6.50...

    A block of mass m1 = 1.90 kg and a block of mass m2 = 6.50 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. A wedge in the shape of a right trapezoid...

  • Circle answers please A block of mass m1 = 1.65 kg and a block of mass...

    Circle answers please A block of mass m1 = 1.65 kg and a block of mass m2 = 6.15 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 0 = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. М, R т (a) Draw force...

  • A block of mass m1.95 kg and a block of mass m2 6.20 kg are connected...

    A block of mass m1.95 kg and a block of mass m2 6.20 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R 0.250 m and mass M-10.0 kg. The fixed, wedge-shaped ramp makes an angle of θ-30.0° as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. M, R (a) Draw force diagrams of both blocks and of the pulley. Choose File no file...

  • A block of mass m, 1.90 kg and a block of mass m2 6.05 kg are...

    A block of mass m, 1.90 kg and a block of mass m2 6.05 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R 0.250 m and mass M - 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 8- 30.00 as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. M, R (a) Draw force diagrams of both blocks and of the pulley....

  • .016. A block of mass m, 2.45 kg and a block of mass m 6.05 kg...

    .016. A block of mass m, 2.45 kg and a block of mass m 6.05 kg are connected by a massless string over a puley in the shape of a solid disk having radius R 0.250 m and mass M20.0 kg. The fixed, wedge-shaped ramp makes an angle of 8 30.O as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks G My Notes Ask Your Teacher M. R (a) Draw force diagrams of both...

  • MR 772 A block of mass m2 = 1.08 kg and a block of mass m2...

    MR 772 A block of mass m2 = 1.08 kg and a block of mass m2 = 12.1 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 2 kg. The fixed, wedge-shaped ramp makes an angle of 0 = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.19 for both blocks. Determine the acceleration of the blocks.

  • A block of mass m1= 4.00 kg moves on the surface of a horizontal table. The...

    A block of mass m1= 4.00 kg moves on the surface of a horizontal table. The coefficient of kinetic friction k between the table top and m1 is equal to 0.350. Block 2 of mass m2= 2.00 kg is tied to m1 via a string that passes over a frictionless, massless pulley. The two blocks start from rest and m2 drops by a distance L =1.75 m to the floor. Use the work-energy theorem to determine the speed v of...

  • Block 1, of mass m1 = 0.650 kg , is connected over an ideal (massless and...

    Block 1, of mass m1 = 0.650 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of θ = 30.0 ∘ and a coefficient of kinetic friction between block 2 and the plane of μ = 0.250, an acceleration of magnitude a = 0.500 m/s2 is observed for block 2. Find the mass of block 2, m2. Express your answer numerically in kilograms.

  • Two blocks with masses m1 and m2 are connected by a massless string over a frictionless...

    Two blocks with masses m1 and m2 are connected by a massless string over a frictionless pulley. Block 1 sits on a frictionless horizontal surface and block 2 sits on a plane inclined at an angle θ above the horizontal. The coefficient of friction between block 2 and the incline is µk. The pulley, which is a uniform disk, has a mass mp and a radius R. When you release the blocks, both blocks slide without the string slipping on...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT