Question

QUESTION 2 Carbon dioxide enters an adiabatic nozzle steadily at 1 MP, 481 °C, and mass flow rate of 6,706 kg/h and exits the
0 0
Add a comment Improve this question Transcribed image text
Answer #1

o n=ANI m = 6706 K9In + = 108627 Kg/s P, V = MRT, . RT 0. 1894 (481+273) Roo2 = 0.189 kJ/kg k 2 = = 1x100 = 0.142 m²/kg 1.862

Add a comment
Know the answer?
Add Answer to:
QUESTION 2 Carbon dioxide enters an adiabatic nozzle steadily at 1 MP, 481 °C, and mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Carbon dioxide enters an adiabatic nozzle steadily at 1 MPa and 500°C with a mass flow...

    Carbon dioxide enters an adiabatic nozzle steadily at 1 MPa and 500°C with a mass flow rate of 6000 kg/h and leaves at 100 kPa and 450 m/s. The inlet area of the nozzle is 40 cm2 Determine (a) the inlet velocity and (b) the exit temperature.

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • 2.Air enters an adiabatic nozzle in steady flow at 300 kPa, 200 C and 45 m/sec,...

    2.Air enters an adiabatic nozzle in steady flow at 300 kPa, 200 C and 45 m/sec, and leaves at 100 kPa and 180 m/sec. The inlet area of the nozzle is 110 cm 2. Determine: (a) the mass flow rate through the nozzle, and mdot = _ kg/sec (b) the exit temperature T2 = OC

  • Carbon dioxide flows steadily through a varying cross-sectional area duct such as a nozzle at a...

    Carbon dioxide flows steadily through a varying cross-sectional area duct such as a nozzle at a mass flow rate of 3.00 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200?C with a low velocity and expands in the nozzle to a pressure of 1200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the density, velocity, flow area, and Mach number at each location along the duct that...

  • Steam enters an adiabatic nozzle at 400 °C and 800 kPa with a velocity of 16...

    Steam enters an adiabatic nozzle at 400 °C and 800 kPa with a velocity of 16 m/s. It leaves the nozzle at 300 °C and 400 kPa. The inlet area of the nozzle is 800 cm2. Determine; a. The mass flow rate through the nozzle, in kg/s Ans. _kg/s b. The volume flow rate of the steam at the exit, in m3/s Ans._ _m3/s The velocity of the steam at the nozzle exit, in c. m/s Ans. m/s

  • 1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C...

    1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450°C with a velocity of 80 m/s. Calculate the velocity of the water at the tube inlet and the inlet volume flow rate. [5-14] 2. Air enters a nozzle steadily at 50 psia, 140°F, and 150 ft/s and leaves at 14.7 psia and 900 ft/s. The heat loss from the nozzle is estimated to be 6.5...

  • Nitrogen gas at 60 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of...

    Nitrogen gas at 60 kPa and 7°C enters an adiabatic diffuser steadily with a velocity of 200 m/s and leaves at 85 kPa and 22°C. Determine (a) the exit velocity of the nitrogen and (b) the ratio of the inlet to exit area A1/A2. Why in this question we ignore the value of mass flow rate ?

  • Air enters an adiabatic nozzle at 500 kPa and a temperature of 200 °C with a...

    Air enters an adiabatic nozzle at 500 kPa and a temperature of 200 °C with a velocity of 100 m/s. It exits the nozzle at a pressure of 100 kPa. Assuming that the expansion through the nozzle occurs reversibly, determine (a) the exit temperature and (b) the exit velocity of the air. The specific heats of air can be assumed to be constant with Cv = 0.742 kJ/kg oC and Cp = 1.029 kJ/kg oC.

  • Nitrogen gas at 63 kPa and 7 C enters an adiabatic difuser steadily with a velocity...

    Nitrogen gas at 63 kPa and 7 C enters an adiabatic difuser steadily with a velocity of 280 m/s and leaves at 95 kPa and 28 C. The molar mass of nitrogen is M- 28 kg/kmol and the enthalpies are 8141 kJ/kmol at 7 C and 8723 kJ/kmol at 28 C. a. Write down the energy balance equation specific to this problem. b. Determine the exit velocity. c. The ratio of the inlet to exit area Ai/A2.

  • 2. Air enters an adiabatic nozzle with a pressure, temperature, and velocity of 900 kPa 500°C, an...

    2. Air enters an adiabatic nozzle with a pressure, temperature, and velocity of 900 kPa 500°C, and 2.8 m/s, respectively. The air leaves the nozzle at 850 kPa and 480°C. What is the velocity at the exit of the nozzle? Ans 208.949 m/s 2. Air enters an adiabatic nozzle with a pressure, temperature, and velocity of 900 kPa 500°C, and 2.8 m/s, respectively. The air leaves the nozzle at 850 kPa and 480°C. What is the velocity at the exit...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT