Question

1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450

0 0
Add a comment Improve this question Transcribed image text
Answer #1

9.1 Given:. (1) d = 130 mm = 0.13 m (2) Inlet Area, A, - Az Coutlet area) Co d = constant) (3) Outlet velocity, V2 = 80 m. Tofrom superheated steam table, at P2 = 6MPa, T2 = 450°c specific rolume, 12 = 0.0521660 miliona Applying continuity equation a

Add a comment
Know the answer?
Add Answer to:
1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • Carbon dioxide enters an adiabatic nozzle steadily at 1 MPa and 500°C with a mass flow...

    Carbon dioxide enters an adiabatic nozzle steadily at 1 MPa and 500°C with a mass flow rate of 6000 kg/h and leaves at 100 kPa and 450 m/s. The inlet area of the nozzle is 40 cm2 Determine (a) the inlet velocity and (b) the exit temperature.

  • steam enters a turbine at 1000 psia and 1000 degrees celsius, and leaves at 5Psia and...

    steam enters a turbine at 1000 psia and 1000 degrees celsius, and leaves at 5Psia and 97% quality, the turbine is adiabatic and the power output is 25000 hp. Calculate: 1- the work of the turbine ( in btv/lbm) 2- the mass flow rate in lbm/s, if the work of the turbine is 353.399 btv/lbm 3- the inlet diameter, if the mass flow rate is 60 lbm/s NOTE: inlet velocity ≈ exit velocity =80 ft/s 1hp=2545 btv/hr - Steam turbine...

  • Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily...

    Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m^2.The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine the mass flow rate of the air and the temperature of the air leaving the diffuser. Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K....

  • A ship's steam turbine receives 7200 lbm/min of steam at pressure of 900psia and a velocity...

    A ship's steam turbine receives 7200 lbm/min of steam at pressure of 900psia and a velocity of 100ft/s. The steam leaves the turbine at 450 psia with a velocity of 800 ft/s. Specific enthalpy at the inlet and exit, respectively, are 1508.9 Btu/lbm and 1238.5 Btu/lbm. As the steam passes through turbine 12 Btu/lbm of heat is lost to the environment. a) Using the Steady Flow Energy Equation, determine the specific work generated by this turbine. (Btu/lbm) b) Determine the...

  • 10. (25 Points) Steam enters an insulated nozzle at 140 psia, 600 F with a velocity...

    10. (25 Points) Steam enters an insulated nozzle at 140 psia, 600 F with a velocity of 100 ft/s. It leaves the nozzle at 20 psia, 360°F. The mass flow rate is 10 lbm/s. Find: Ans a) b) Ans. The actual kinetic energy of the steam at the exit, in Btu The exit velocity in ft/s for part a) The exit cross sectional area of the nozzle, in in The nozzle isentropic efficiency (%) Show the actual and the ideal...

  • Steam enters an adiabatic turbine steadily at 3 MPa and 450°C at a rate of 8...

    Steam enters an adiabatic turbine steadily at 3 MPa and 450°C at a rate of 8 kg/s and exits at 0.2 MPa and 150*C. If the surrounding air is at 25°C and 100 kPa, determine: a. The specific flow exergy of steam at turbine entrance b. The specific flow exergy of steam at turbine exit c. The rate of flow exergy change in the process.

  • Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s

    Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s, and leaves at 100 kPa and 75 m/s. If the power output of the turbine is 5 MW and the isentropic efficiency is 77 percent, determine: A. the mass flow rate of steam through the turbine, B. the temperature at the turbine exit, and C. the rate of entropy generation during this process.

  • Steam enters a turbine operating at steady state at 2 MPa, 360 °C with a velocity...

    Steam enters a turbine operating at steady state at 2 MPa, 360 °C with a velocity of 52 m/s. Saturated vapor exits at 0.1 MPa and a velocity of 35 m/s. The elevation of the inlet is 1 m higher than at the exit. The mass flow rate of the steam is 21 kg/s, and the power developed is 5 MW. Let g = 9.81 m/s2. Determine the area at the inlet, in m2.

  • Question 6) Steam enters a nozzle at 400°C and 800 kPa with a velocity of 10...

    Question 6) Steam enters a nozzle at 400°C and 800 kPa with a velocity of 10 m/s, and leaves at 3008C and 200 kPa while losing heat at a rate of 25 kW. For an inlet area of 800 cm2, determine the velocity and the volume flow rate of the steam at the nozzle exit.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT