Question
ONLY NEED THE FREE BODY DIAGRAMS.

Two bhocks or massokg and im-5.0 kg are conmected by a Hight cord over The coeficient of kinetic friction betwoen block B and a frictionless pulley as shown in Pig. 5-20 the incline is A-0.20 Draw free-body diagram for Draw free-body diagram for ma
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
ONLY NEED THE FREE BODY DIAGRAMS. Two bhocks or massokg and im-5.0 kg are conmected by...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem#7 Two boxes are connected by a weightless cord running over a very light frictionless pulley...

    Problem#7 Two boxes are connected by a weightless cord running over a very light frictionless pulley as shown in the figure. Box A, of mass 8.0 kg, is initially at rest on the top of the table. The coefficient of kinetie friction between box A and the table is 0.10. Box B has a mass of 15.0kg. and the system begins to move just after it is released. (a Draw the free-body diagrams for each of the boxes, identifyi each...

  • Problem 6: Two objects are connected by a light string that passes over a frictionless pulley, as...

    Problem 6: Two objects are connected by a light string that passes over a frictionless pulley, as shown in the figure. The coefficient of kinetic friction between the incline and block m2 is 0.3. Furthermore, m1 8.00 kg, m2 3.00 kg, and e 55.0 a) Draw free-body diagrams of both objects. b) Find the accelerations of the objects. c) Calculate the tension in the string d) What is the speed of each object 2.00 s after being released from rest?...

  • 11 Two objects are connected by a light string that passes over a frictionless pulley as...

    11 Two objects are connected by a light string that passes over a frictionless pulley as shown in the figure below. The surface between the incline and m has a coefficient of kinetic friction equal to 0.100. If m - 10.00 kg, m2-2.50 kg, and e -75.0, find the magnitude of the acceleration and the tension in the rope. You will receive points for correctly drawn free body diagrams. mi nag 11a. (8 pts) Draw a free-body diagram of each...

  • (20 pts) 2. A mass (M-5.0 kg) is connected by a light cord to a mass...

    (20 pts) 2. A mass (M-5.0 kg) is connected by a light cord to a mass ( T2 4.0 kg) which slides on a smooth surface, as shown in the figure. T The pulley (radinus-0.20 m) rotates about a frictionless axle. The acceleration of M2 is 3.5 m/s a) Draw a free body diagrams for mass Mi, M, and the pulley as it is moving. Use the illustrations below. Label ALL forces on the free body diagrams. (4 pts) b)...

  • Please show all work, equations used, and free body diagram. Two masses are connected by a...

    Please show all work, equations used, and free body diagram. Two masses are connected by a string (ignore the mass of the string), one is on an incline and the other is being suspended by a pulley in the air (Pulley is also massless and frictionless). The higher object (m1) is 5 kg and is sitting on the incline and is experiencing friction. The incline is 20 degrees from the horizontal and has a coefficient of kinetic friction Uk=0.35. The...

  • Requirement: (1) Draw necessary free body diagrams, (2) write necessary equations, and (3) name the adopted...

    Requirement: (1) Draw necessary free body diagrams, (2) write necessary equations, and (3) name the adopted principle 3. The mass of block is 10 kg and the horizontal force applied to the block as shown in Figure below is 100 N. The coefficients of kinetic friction between the block and the inclined plane is μ A 0.2. Determine the acceleration of the block and its direction. Draw free body diagram and write the needed equation (25 points) 30P

  • Problem#6 A system comprising blocks, a light frictionless pulley, a frictionless incline, and connecting ropes is shown in the figure. The 9.0-kg block accelerates downward when the system...

    Problem#6 A system comprising blocks, a light frictionless pulley, a frictionless incline, and connecting ropes is shown in the figure. The 9.0-kg block accelerates downward when the system is released from rest. The tension in the rope connects the 6.0-kg block and the 4.0-kg block. (a) Draw the free body diagrams (b) Find the tension in the rope (c) Find the reaction of the incline surface on each block rn +1 30° 10-9 Problem#6 A system comprising blocks, a light...

  • A 5 kg block is released from rest on a plane with a rough surface that...

    A 5 kg block is released from rest on a plane with a rough surface that is inclined at 25 degree. The coefficient of kinetic friction between the block and the plate is 0.2 and the coefficient of state friction between the block and the plane is 0.5. Draw a free body diagram of the block. What is the acceleration of the block? For the system below, m1 = 10 kg and m2 = 15 kg. The table and pulley...

  • Problem 1: Two blocks of mass: m, =25 kg and m2=45 kg are connected by that...

    Problem 1: Two blocks of mass: m, =25 kg and m2=45 kg are connected by that passes over a pulley as show in the figure. The coefficients of kinetic and static friction between m, and the table are 0.25 and = 0.45, respectively a massless string 1 (a) Identify and label all forces and draw the free- body diagram for each block (b) Will the system be in static equilibrium? Assume the pulley is frictionless. m2 (e) Find the tension...

  • A block of mass m2 = 38 kg on a horizontal surface is connected to a...

    A block of mass m2 = 38 kg on a horizontal surface is connected to a mass m2 = 20.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m, and the horizontal surface is 0.24. m (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? 3.39 Did you draw a free-body...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT