Question

2. (24 pts) A 4-foot spring measures 6 feet long after a mass weighing 8 pounds is attached to it. The medium through which t

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ky = mg kx2 8x32 = 8x32 2 k 128 lbfft face tumine K = 128 Hift eft=y Damping for ce 1.5 V = Gv Initial condition y(0)=0 jloj-0.09375+ [B sin (3-1985+)] ylt) ý (t] -0.093757 -0.09375 B e sin (3-19857) + 3.9985 Bé -0.09375t (as (3.9985t) 7 fils 7 - 3.IF U HAVE ANY DOUBT U CAN ASK ME IN COMMENT BOX....HOPE U LIKE IT...........

Add a comment
Know the answer?
Add Answer to:
2. (24 pts) A 4-foot spring measures 6 feet long after a mass weighing 8 pounds...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 4 foot spring measures 8 feet long after a mass weighing 8 pounds is attached...

    A 4 foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to 2^1/2 times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 9 ft/a. (Use g =32 ft/s^2 for the acceleration due to gravity.) a) Find the time at which the mass attains its extreme...

  • A mass weighing 4 pounds is attached to a spring whase constant is 2 b/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released fr...

    A mass weighing 4 pounds is attached to a spring whase constant is 2 b/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilbrium position with a downward velocity of 10 ft/s. Determine the time at which the mass passes through the equilibrium position. (Use g 32 ft/s2 for the acceleration due to gravity.) Find the time after the mass passes through...

  • A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in...

    A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in a medium that offers a damping force numerically equal to 3 times the instantaneous velocity. The mass is initially released from the equilibrium position with a downward velocity of 4 ft/s. Find the spring constant ?, mass ? and the damping constant ? Find ? and ?, and the roots of the characteristic equation: Write the initial conditions: Estimate the time when the mass...

  • 2. A mass weighing 4 pounds is attached to a spring whose spring constant is 2...

    2. A mass weighing 4 pounds is attached to a spring whose spring constant is 2 Ib/ft. The system is subjected to a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 8 ft/s. (a) Establish the initial-value problem which governs this motion. (b) Solve this initial-value problem. (c) Find the time at which the mass attains its extreme displacement...

  • (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is...

    (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 8 ft/s. Find the equation of motion, ä(t). What type of damped motion is this system?

  • 1. A mass weighing 8 pounds is attached to a 4 foot long spring and stretches it to 8 feet long. ...

    1. A mass weighing 8 pounds is attached to a 4 foot long spring and stretches it to 8 feet long. The medium offers a damping force equal to 0.5 times the instantaneous velocity. Find the equation of motion if the mass is released from rest at a position 18 inches above the equilibrium. 1. A mass weighing 8 pounds is attached to a 4 foot long spring and stretches it to 8 feet long. The medium offers a damping...

  • A force of 4 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is...

    A force of 4 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 0.4 times the instantaneous velocity (a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position. x(t) = ft (b) Express the equation of motion in the form x(t) = Aet...

  • A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft

    A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 16 ft/s. (g = 32 ft/s2) a. Find the equation of motion. b. What type of motion is this? c. Determine the time at which the mass passes through the equilibrium position.

  • A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is...

    A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force numerically equal to 0.8 times the instantaneous velocity. (a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position x(t) ft (b) Express the equation of motion in the form x(t) = Ae-At sin...

  • (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is...

    (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is removed and replaced with a mass weighing 51.2 pounds, which is initially released from a point 4 inches above the equilibrium position with an downward velocity of ft/s. Find the equation of motion, ä(t). (g = 32 ft/s2) (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT