Question

In each of the diagrams below, two blocks are connected by an ideal string that passes over an ideal pulley. The mass of the larger block is twice that of the smaller block. In case A, the smaller block is missing and a hand pulls down on the string witih a force F that is equal to the weight of the smaller block.
media%2F2d0%2F2d0db4dd-cdae-4c8a-adda-5c
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
In each of the diagrams below, two blocks are connected by an ideal string that passes...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two blocks are connected by an ideal cord that does not stretch, the cord passes over...

    Two blocks are connected by an ideal cord that does not stretch, the cord passes over an ideal pulley. The weight of the heavier block is 7.3 N larger than the weight of the lighter block. The lighter block has the acceleration 5.8 m/s2 up. What is the weight of the heavier block?

  • Two blocks are connected by a string that passes over a pulley of radius R and...

    Two blocks are connected by a string that passes over a pulley of radius R and moment of Inertia I. The blocks of mass m1 slides on a frictionless, horizontal surface,the block of mass m2 is suspended from the string. Find the acceleration a of the blocks and the Tensions T1 and T2 assuming the string does not slip on the pulley.

  • Two blocks with equal mass m = 2.1 kg are connected by a string that passes...

    Two blocks with equal mass m = 2.1 kg are connected by a string that passes over a pulley wheel. Block A sits on a level table, with friction acting between the block and ramp surfaces with coefficient of kinetic friction µk = 0.27. Block B is suspended below the pulley wheel, initially at a height h = 1.23 m above the ground. The system is released from rest. What is the final speed of both blocks in units of...

  • Pulleys: Two blocks are connected by an ideal cord that does not stretch, the cord passes...

    Pulleys: Two blocks are connected by an ideal cord that does not stretch, the cord passes over an ideal pulley. One of the two blocks has a mass of 11.0 kg, and it is accelerating downward at 1.2 m/s2. What is the mass of the other block?

  • The figure below shows two blocks connected by a string of negligible mass passing over a...

    The figure below shows two blocks connected by a string of negligible mass passing over a frictionless pulley. m1 = 3.8 kg and θ = 12.0°. Assume that the incline is smooth please dont answer if not sure The figure below shows two blocks connected by a string of negligible mass passing over a frictionless pulley. m, - 3.8 kg and -12.0°. Assume that the incline is smooth. ni (a) For what value of m2 (in kg) will the system...

  • Two blocks are connected to a string, and the string is hung over a pulley connected...

    Two blocks are connected to a string, and the string is hung over a pulley connected to the ceiling, as shown in the figure below. Two blocks, labeled m1 and m2, are connected to a string which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. A block labeled m1 hangs suspended off the surface on the left side of the pulley. A block m2 is on the right side of...

  • Two blocks are connected by a string that goes over an ideal pulley as shown in the figure

    Problem# 9: Two blocks are connected by a string that goes over an ideal pulley as shown in the figure. Block A has a mass of 3.00 kg and can slide over a rough plane inclined 30.0° to the horizontal. The coefficient of kinetic friction between block A and the plane is 0.400. Block B has a mass of 2.77 kg. (a)Draw the free body diagram (b)What is the reaction of the surface on block A? (c)What is the friction force? (d)What is the acceleration...

  • Two blocks are connected by a string that goes over an ideal pulley as shown in...

    Two blocks are connected by a string that goes over an ideal pulley as shown in the figure. Block m1 has a mass of 2.02 kg and can slide over a rough plane inclined 27° to the horizontal. The coefficient of kinetic friction between block A and the plane is 0.389. Block B has a mass of 4.47 kg. What is the acceleration of the blocks?

  • Two blocks with masses ?1 and ?2 are connected by a massless string that passes over...

    Two blocks with masses ?1 and ?2 are connected by a massless string that passes over a massless pulley as shown. ?1 has a mass of 2.25 kg and is on an incline of ?1=43.5∘ with coefficient of kinetic friction ?1=0.205 . ?2 has a mass of 6.75 kg and is on an incline of ?2=35.5∘ with coefficient of kinetic friction ?2=0.105 . The two‑block system is in motion with the block of mass ?2 sliding down the ramp. Find...

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=42.5 with coefficient of kinetic friction μ1=0.205. M2 has a mass of 7.25 kg and is on an incline of θ2=31.5 with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT