Question

A pipe open only at one end has a fundamental frequency of 254 Hz. A second...

A pipe open only at one end has a fundamental frequency of 254 Hz. A second pipe, initially identical to the first pipe, is shortened by cutting off a portion of the open end. Now when both pipes vibrate at their fundamental frequencies, a beat frequency of 20 Hz is heard. How many centimeters were cut off the end of the second pipe? The speed of sound is 345 m/s.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Fundamental frequency =f1=v/4L=255

where V= velocity of sound in air

so L=V/4f1

L = 345/(4*254)

L = =0.339 m


let dL be the shortened length


then the fundamental frequency of second pipe = f2 = V/4(L-dL)

Beats=f2-f1= 20 Hz

f2 = 20 + 254 = 274 Hz

L-dL = v/4*274 = 345/(4*274) = 0.314

dL= 0.339 - 0.314

dL = 0.025 m or   2.5 cm


Add a comment
Know the answer?
Add Answer to:
A pipe open only at one end has a fundamental frequency of 254 Hz. A second...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pipe open only at one end has a fundamental frequency of 240 Hz. A second...

    A pipe open only at one end has a fundamental frequency of 240 Hz. A second pipe, initially identical to the first pipe, is shortened by cutting off a portion of the open end. Now when both pipes vibrate at their fundamental frequencies, a beat frequency of 16 Hz is heard. How many centimeters were cut off the end of the second pipe? The speed of sound is 345 m/s.

  • A pipe open only at one end has a fundamental frequency of 240 Hz. A second...

    A pipe open only at one end has a fundamental frequency of 240 Hz. A second pipe, initially identical to the first pipe, is shortened by cutting off a portion of the open end. Now when both pipes vibrate at their fundamental frequencies, a beat frequency of 12 Hz is heard. How many centimeters were cut off the end of the second pipe? The speed of sound is 348 m/s.

  • 11. Consider an open PVC pipe that is 5 m long and has a fundamental frequency...

    11. Consider an open PVC pipe that is 5 m long and has a fundamental frequency of 70 Hz, open at both ends. a) If the pipe is cut in half, what is the new fundamental fre- quency? (include units) b) If after being cut in half in a), the pipe is closed off at one end, what is the new fundamental frequency? (include units) c) The speed of sound in helium is approximately 3 times faster than in air....

  • Organ pipe A with both ends open has a fundamental frequency of 320.0 Hz. The third...

    Organ pipe A with both ends open has a fundamental frequency of 320.0 Hz. The third harmonic of organ pipe B with one end open has the same frequency as the second harmonic of pipe A. Assume a speed of sound of 343 m/s. What is the length of Pipe A? What is the length of Pipe B?

  • 1) John is holding a tuning fork that is creating a 663-Hz sound. Jack holds an...

    1) John is holding a tuning fork that is creating a 663-Hz sound. Jack holds an identical tuning fork that is creating the same frequency sound. If John starts walking toward Jack at a speed of 3.81 m/s, what is the beat frequency detected by Jack? Answer in Hz 2)An organ player in a cathedral plays pipes X and Y, which are both open at both ends. Pipe X has a length of 0.823 m. They both vibrate at their...

  • #4 (will rate) 1) The fundamental frequency of a pipe that is open at both ends...

    #4 (will rate) 1) The fundamental frequency of a pipe that is open at both ends is 611 Hz. (Let the speed of sound be 344 m/s.) (a) How long is this pipe? (b) If one end is now closed, find the wavelength of the new fundamental. (c) If one end is now closed, find the frequency of the new fundamental. 2) A piano tuner stretches a steel piano wire with a tension of 800 N. The steel wire is...

  • Two pipes of equal length are each open at one end. Each has a fundamental frequency...

    Two pipes of equal length are each open at one end. Each has a fundamental frequency of 460 Hz at 280 K. In one pipe the air temperature is increased to 285 K. If the two pipes are sounded together, what beat frequency results? Need Help? -/2 points SerCP11 14.A.P.077. My Notes Ask Your Teacher On a workday, the average decibel level of a busy street is 66 dB, with 120 cars passing given point every minute. If the number...

  • Calculate the length of a pipe that has a fundamental frequency of 316 Hz. (Take the...

    Calculate the length of a pipe that has a fundamental frequency of 316 Hz. (Take the speed of sound in air to be 343 m/s.) Calculate the length of a pipe that has a fundamental frequency of 316 Hz. (Take the speed of sound in air to be 343 m/s.) (a) Assume the pipe is closed at one end (b) Assume the pipe is open at both ends

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz.    a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch write the wavelength for each pipe in terms of the pipe lengths LA...

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz. a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch, write the wavelength for each pipe in terms of the pipe lengths LA and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT