Question

P1) (50 points) - Air is compressed steadily by a 7.5-kW compressor. Air enters a compressor at a pressure of 100 kPa, a temperature of 290 K and a velocity of 6 m/s through an inlet with an area of 0.005 m2. At the exit, the pressure is 700 kPa, the temperature 480 K and the velocity is 2 m/s. Determine: a) heat transfer that takes place between the compressor and the surrounding medium at 290 K, in kW and the entropy generation during this compression process, in kW/K. (Note: the ideal gas model equation is Pv-RT, where R 0.287 kPa-m3/kg-K) 700 kPa 480 K 2 m/s 290 K Air compressor 7.5 kw 100 kPa 290 K 6 m/s 0.005 m2

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
P1) (50 points) - Air is compressed steadily by a 7.5-kW compressor. Air enters a compressor...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air is compressed steadily by a reversible compressor from an inlet state of 100 kPa and...

    Air is compressed steadily by a reversible compressor from an inlet state of 100 kPa and 300 K to an exit pressure of 900 kPa. if the volume flow rate = 1 m/sec Determine: the compressor power (kW) for isentropic compression with k = 1.4 Choose... the compressor power (kW) for polytropic compression with n = 1.3 Choose.. the compressor power (kW) for ideal two stage compression with intercooling with a polytropic exponent of 1.3 Choose... the compressor power (kW)...

  • A compressor is used to steadily compress Air which enters the compressor at a pressure of...

    A compressor is used to steadily compress Air which enters the compressor at a pressure of 220 kPa, a temperature of 320 K, and a velocity of 8 m/s through an inlet with area of 0.13 m². The air exits the compressor at a pressure of 770 kPa, temperature is 490 K, and a of velocity is 4 m/s. The compressor consumes 430 kW of power. Assuming variable specific heats, find: A) The heat transfer during this process. B) The...

  • 3_4: Air from the surrounding atmosphere at 100 kPa, 20 oC, enters a compressor with a...

    3_4: Air from the surrounding atmosphere at 100 kPa, 20 oC, enters a compressor with a velocity of 8.6 m/s through an inlet whose diameter is 36 cm. The compressed air exits at 650 kPa, 225 oC, with a velocity of 2.8 m/s. The rate of entropy generation for the compressor is 0.062 kW/K. Determine the power input to the compressor, kW.

  • 03 4: Air from the surrounding atmosphere at 100 kPa, 20 °C, enters a compressor with...

    03 4: Air from the surrounding atmosphere at 100 kPa, 20 °C, enters a compressor with a velocity of 8.6 m/s through an inlet whose diameter is 36 cm. The compressed air exits at 650 kPa, 225 °C, with a velocity of 2.8 m/s. The rate of entropy generation for the compressor is 0.062 kW/K Determine the power input to the compressor, kW.

  • Air at 108 kPa and 20 oC is compressed steadily by a 5.3 kW compressor to...

    Air at 108 kPa and 20 oC is compressed steadily by a 5.3 kW compressor to 620 kPa and 170 oC . The mass flow rate of air is 1.55 kg/min. The surrounding temperature or the ambient temperature is 17 oC. Calculate the loss of available energy or exergy destroyed in kW. Assume Cp of air as 1.005 kJ/kg K and gas constant R as 0.287 kJ/kg K . Remember to change temperatures to the Kelvin scale. (Hint: Here entropy...

  • Air is compressed steadily by a reversible compressor from an inlet state of 100 kPa and...

    Air is compressed steadily by a reversible compressor from an inlet state of 100 kPa and 300 K to an exit pressure of 900 kPa. Determine the compressor work per unit mass for (a) isentropic compression with k 1.4, (b) a compressor with 85% isentropic efficiency, (c) two-stage compression (100 kPa to 300 kPa, and 300 kPa to 900 kPa) with intercooling with an isentropic efficiency of 85% for both compressors. (50 points) 2.

  • Q3: Air is compressed steadily by a reversible compressor from an inlet state of 100 kPa and 27 C...

    Q3: Air is compressed steadily by a reversible compressor from an inlet state of 100 kPa and 27 C to an exit pressure of 900 kPa. Determine the compressor work with the mass flow rate of 0.12 kg/s;(R-0,287 kJ/kgK) 0 a) Polytropic compression with n-1.3, b) Ideal two stage compression with intercooling with a polytropic exponent of 1 .3. Hava särekli akh, tersinir bir kompresörde 100 kPa basinç ve 27 C sicakliktan, 900 kPa basinca sikaşturidmaktadur. Akgkarun kätle debisinin 0.12...

  • Air is compressed by a 18.00-kW compressor from P1 to P2. The air temperature is maintained const...

    Air is compressed by a 18.00-kW compressor from P1 to P2. The air temperature is maintained constant at 21°C during this process as a result of heat transfer to the surrounding medium at 10°C. Determine the rate of entropy change of the air. AS- kW/K (Round to five decimal places.) Air is compressed by a 18.00-kW compressor from P1 to P2. The air temperature is maintained constant at 21°C during this process as a result of heat transfer to the...

  • Air is compressed by a 34.6 kW compressor from P1 to P2. The air temperature is...

    Air is compressed by a 34.6 kW compressor from P1 to P2. The air temperature is maintained constant at 34°C during this process as a result of heat transfer to the surrounding medium at 15°C. Determine (a) the rate of entropy change of the air, (b) the rate of entropy change of the surroundings, and (c) the rate of entropy generation. State the assumptions made in solving this problem. To check your work, enter the rate of entropy generation, in...

  • Air is compressed steadily by a reversible compressor from 100 kPa and 300 K to 900...

    Air is compressed steadily by a reversible compressor from 100 kPa and 300 K to 900 kPa by a 10-kW motor. Assume air is both ideal and has constant specific heat capacity values determined at room temperature from Table A-2 at room temperature (300 K). a) Determine the mass flow rate through the compressor if the process is isentropic. ( find and identify the work per unit mass) b) polytropic with n = 1.2 c) isothermal d) ideal two-stage polytropic...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT