Question

Question 3 Show that the pressure head rise in the impeller of a centrifugal pump when frictional and other losses in the impeler are neglected, is given by (a) where Vni is the velocity of flow at the inlet, while at the outlet of the backward curved blades, u2, m2, and ßz are the blade velocity, velocity of flow and blade angle, respectively. (4 marks) A centrifugal pump rotating at 1450 rpm discharges 0.015 mls of water. Its impeller has internal and external diameters of 200 mm and 400 mm, respectively. Width of the impeller at the inlet is 15 mm and at the outlet 8 mm. If the blade angle at outlet is 35°, find the pressure head rise in the impeller neglect all losses. (b) (4 marks) How much will it impact the pressure head rise if the impeller blades were straight, instead of curved backward? (e) (2 marks)
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Energy\ at\ inlet+work\ done = Energy\ at \ outlet

\frac{P_1}{\rho g}+\frac{V^2_1}{2g}+\frac{V_{w2}u_2}{2g}=\frac{P_2}{\rho g}+\frac{V^2_2}{2g}

\frac{V_{w2}u_2}{g}=H_m+\frac{V^2_2}{2g}-\frac{V^2_1}{2g}..........................(1)

V2 Outlet rl V., Inlet w l

From\ outlet\ velocity\ triangle

tan \beta_2= \frac{V_{f2}}{u_2-V_{w2}}

u_2-V_{w2}= V_{f2} \ cot \beta_2

V_{w2}= u_2-V_{f2} \ cot \beta_2

AlSO

V^2_2=V^2_{w2}+V^2_{f2}

V^2_2=(u_2-V_{f2} \ cot \beta_2)^2+V^2_{f2}

Put\ all \ values \ in \ (1) \ we \ get

H_m=\frac{V^2_1}{2g}+\frac{u_2(u_2-V_{f2} \ cot \beta_2)}{g}-\frac{[(u_2-V_{f2} \ cot \beta_2)^2+V^2_{f2}]}{2g}

H_m=\frac{V^2_1}{2g}+\frac{2u^2_2-2u_2 \ V_{f2} \ cot \beta_2-u^2_2+2V_{f2} \ u_2 \ cot \beta_2-V^2_{f2} \ cot^2 \beta_2-V^2_{f2}}{2g}

H_m=\frac{V^2_1}{2g}+\frac{u^2_2-V^2_{f2} \ cot^2 \beta_2-V^2_{f2}}{2g}

H_m=\frac{V^2_1}{2g}+\frac{u^2_2-V^2_{f2} (1+\ cot^2 \beta_2)}{2g}

H_m=\frac{1}{2g}{[V^2_1+u^2_2-V^2_{f2} (1+\ cot^2 \beta_2)]}   (Because \ cosec^2\beta=1+cot^2\beta)

H_m=\frac{1}{2g}{[V^2_1+u^2_2-V^2_{f2} cosec^2 \beta_2]}

If there is no loss of energy in impeller

Energy\ at\ inlet+work\ done = Energy\ at \ outlet

\frac{P_2-P_1}{\rho g}=\frac{1}{2g}{[V^2_1+u^2_2-V^2_{f2} cosec^2 \beta_2]}

From \ velocity\ triangle

\\ V_1=V_{f1} \\ \\ V_{f1}=V_{f2} \\ \\ V^2_2=V^2_{f2}+V^2_{w2}

u_2=\frac{\pi D N}{60}=\frac{\pi (0.4)(1450)}{60}=30.368 \ m/s

\\tan \beta_2= \frac{V_{f2}}{u_2-V_{w2}}\\ \\ \\ tan 35\degree=\frac{1.492}{30.368-V_{w2}}

V_{w2}=28.237 \ m/s

Q=\pi D_2 B_2V_{f2}

V_{f2}=\frac{Q}{\pi D_2 B_2}=\frac{0.015}{\pi (0.4)(8 \times 10^{-3})}=1.492 \ m/s

V_1=V_{f1}=\frac{Q}{\pi D_1 B_1}=\frac{0.015}{\pi (0.2)(15 \times 10^{-3})}=1.591 \ m/s

\frac{P_2-P_1}{\rho g}=\frac{1}{2 \times 9.81}{[1.591^2+30.368^2-1.492^2 cosec^2 35]}

\frac{P_2-P_1}{\rho g}=46.788 \ m

\Delta P=46.788 \times 10^3 \times 9.81=459kPa

\\ For\ backward\ curved \ vane \ the \ value \ of \ \beta_2 < 90 \degree \ while \ for \ straight\ impeller\ blades\ \beta_2=90 \degree

Pressure\ head \ rise\ is \ given \ by

Forward curved vane > 90 P2- 90° 6 Radial vane Backward curved vane Discharge (Q)

H_{m-back}=\frac{1}{2g}{[V^2_1+u^2_2-V^2_{f2} cosec^2 \beta_2]}(\mathit{For\ backward\ curved \ blade})

H_{m-Back}=46.788 \ m

H_{m-straight}=\frac{1}{2g}{[V^2_1+u^2_2-V^2_{f2}]}(\mathit{For\ straight \ blade\ as \ cosec90\degree=1})

\frac{P_2-P_1}{\rho g}=\frac{1}{2 \times 9.81}{[1.591^2+30.368^2-1.492^2 cosec^2 90]}

H_{m-straight}=47.019 \ m

{\color{Red} Hence \ head\ rise \ increases \ with\ straight\ blade}

\% \ increase \ in\ head=\frac{47.019-46.788}{46.788}

\% \ increase \ in\ head=0.494 \ \% \ increase

Add a comment
Know the answer?
Add Answer to:
Question 3 Show that the pressure head rise in the impeller of a centrifugal pump when...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT