Question

Question 4 (4 points) A mass-spring system is described by the following equation, 3x + yx + 12x = 0 (0.2) (1) For which va

0 0
Add a comment Improve this question Transcribed image text
Answer #1

32 + y x! +12x = 0 m=3kg k= 12 N/m c=7 critical damping lofficiezt = 21 km = 211283. (6= 12N/m clampiry cofficient = e = 1 1

Add a comment
Know the answer?
Add Answer to:
Question 4 (4 points) A mass-spring system is described by the following equation, 3x" + yx'...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In problems 14-17, set up the spring mass equation. Determine whether it is undamped, under, critically...

    In problems 14-17, set up the spring mass equation. Determine whether it is undamped, under, critically or overdamped. Solve the IVP and draw a graph (technology is cool) of the solution on the interval 0 < t < 12. If the system Is underdamped convert the solution to the form Re^alpha t sin(beta t + delta) A mass weighing 64 pounds stretches a spring 0.32 foot. The mass is initially released from a point 8 inches above the equilibrium position...

  • 6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is...

    6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is then submerged in a liquid that inparts a damping force equal to 4 tines the instantansous velocity. At t = 0 the mass is released from the equilibrium position with no initial velocity. An external force t)4t-3) is applied. (a) Write (t), the external force, as a piecewise function and sketch its graph b) Write the initial-value problem (c)Solve...

  • 5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 feet. The entire system...

    5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 feet. The entire system is placed in a medium that offers a damping force numerically equivalent to twice the instantaneous velocity. The mass is initially released from a point 1/2 foot above the equilibrium point with a downward velocity of 5 ft/sec. (a) (6 points) Write the differential equation for the mass/spring system and identify the initial conditions. 7 5. (b) (12 points) Solve the IVP in part...

  • 2. A mass weighing 4 pounds is attached to a spring whose spring constant is 2...

    2. A mass weighing 4 pounds is attached to a spring whose spring constant is 2 Ib/ft. The system is subjected to a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 8 ft/s. (a) Establish the initial-value problem which governs this motion. (b) Solve this initial-value problem. (c) Find the time at which the mass attains its extreme displacement...

  • (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is...

    (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 8 ft/s. Find the equation of motion, ä(t). What type of damped motion is this system?

  • Problems 1 and 2 A mass weighing 3/4 slug, attached to the end of a spring...

    Problems 1 and 2 A mass weighing 3/4 slug, attached to the end of a spring whose constant 72 lb/ft. Initially the mass is released from rest from a point 3 inches above the equilibrium position. Find the equation of motion. Determine the equation of motion if the mass in problem 1 is Initially released from the equilibrium position with a downword velocity of 2ft/sec. Initially released from a point 6 inches below equilibrium with an upward velocity 2ft/sec.

  • Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described...

    Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described by the following ordinary differential equation: d’x dx ++ kx = 0 m dr dt where x = displacement from equilibrium position (m), t = time (s), m 20-kg mass, and c = the damping coefficient (N · s/m). The damping coefficient c takes on three values of 5 (under- damped), 40 (critically damped), and 200 (overdamped). The spring constant k = 20 N/m....

  • (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is...

    (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is removed and replaced with a mass weighing 51.2 pounds, which is initially released from a point 4 inches above the equilibrium position with an downward velocity of ft/s. Find the equation of motion, ä(t). (g = 32 ft/s2) (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that...

  • 1. A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds...

    1. A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the spring, and the system is then immersed in a medium that offers a damping force that is equal to 0.4 times the instantaneous velocity. (a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position. (Use the convention that displacements measured below the equilibrium position are positive.) (b)...

  • Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant...

    Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant is c =24 lb-sec/ft, and the spring constant is k=52lb/ft. The motion is free damped motion and the mass is set in motion with initial position x0=5ft and the initial velocity v0= -7ft/sec. Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT