Question

5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 feet. The entire system is placed in a medium that offers a da
(c) (2 points) Is the system overdamped, critically damped, or underdamped? Will the mass cross the equilibrium point exactly
0 0
Add a comment Improve this question Transcribed image text
Answer #1

classmate Date Page (a) Given m= 8 lb Al = 1.6 ft hookes law By F= k (12) k = mg 8.832.2 = 161 7.6 also c=2 By Newtons I laclassmate Date Page - s t 4.4843 X(t) = enter A cad(4-1843)+) + sim (9.4843) 4) А = 1/2 8 (0) -5 = - + A +4.48 43 B → B = -57

Add a comment
Know the answer?
Add Answer to:
5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 feet. The entire system...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 fort. The entire system...

    5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 fort. The entire system is placed in a medium that offers a damping force numerically equivalent to twice the instantaneous velocity. The mass is initially released from a point 1/2 foot above the equilibrium point with a downward velocity of 5 sec (a) (6 points) Write the differential equation for the mass spring system and identify the initial conditions 7 5. (b) (12 points) Solve the IVP in...

  • (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is...

    (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 8 ft/s. Find the equation of motion, ä(t). What type of damped motion is this system?

  • (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is...

    (7 points) 13. A mass weighing 10 pounds stretches a spring 3 inches. The mass is removed and replaced with a mass weighing 51.2 pounds, which is initially released from a point 4 inches above the equilibrium position with an downward velocity of ft/s. Find the equation of motion, ä(t). (g = 32 ft/s2) (7 points) 14. A mass weighing 4 pounds stretches a spring 2 feet. The system is submerged in a medium which offers a damping force that...

  • A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in...

    A mass weighing 8 pounds stretches a spring 1 foot. The system is then immersed in a medium that offers a damping force numerically equal to 3 times the instantaneous velocity. The mass is initially released from the equilibrium position with a downward velocity of 4 ft/s. Find the spring constant ?, mass ? and the damping constant ? Find ? and ?, and the roots of the characteristic equation: Write the initial conditions: Estimate the time when the mass...

  • plz print your result -1 points МУ Not A mass weighing 3V 10 N stretches a spring 2 m. The mass is attached to a dashpot device that offers a damping force numerically equal to β (B > 0) times the...

    plz print your result -1 points МУ Not A mass weighing 3V 10 N stretches a spring 2 m. The mass is attached to a dashpot device that offers a damping force numerically equal to β (B > 0) times the instantaneous velocity Determine the values of the damping constant B so that the subsequent motion is overdamped, critically damped, and underdamped. (If an answer is an interval, use interval notation. Use g 9.8 m/s2 for the acceleration due to...

  • 1. A mass weighing 8 pounds is attached to a 4 foot long spring and stretches it to 8 feet long. ...

    1. A mass weighing 8 pounds is attached to a 4 foot long spring and stretches it to 8 feet long. The medium offers a damping force equal to 0.5 times the instantaneous velocity. Find the equation of motion if the mass is released from rest at a position 18 inches above the equilibrium. 1. A mass weighing 8 pounds is attached to a 4 foot long spring and stretches it to 8 feet long. The medium offers a damping...

  • A mass weighing 4 pounds stretches a spring 6 inches. At time t = 0, the...

    A mass weighing 4 pounds stretches a spring 6 inches. At time t = 0, the weight is then struck to set it into motion with an initial velocity of 2 ft/sec, directed downward. Determine the equations of motion for the position and the velocity of the weight. Find the amplitude, period, and frequency of the position (displacement). A 4-lb weight stretches a spring 1 ft. If the weight moves in a medium where the magnitude of the damping force...

  • In problems 14-17, set up the spring mass equation. Determine whether it is undamped, under, critically...

    In problems 14-17, set up the spring mass equation. Determine whether it is undamped, under, critically or overdamped. Solve the IVP and draw a graph (technology is cool) of the solution on the interval 0 < t < 12. If the system Is underdamped convert the solution to the form Re^alpha t sin(beta t + delta) A mass weighing 64 pounds stretches a spring 0.32 foot. The mass is initially released from a point 8 inches above the equilibrium position...

  • 3. A mass weighing 2 pounds stretches a spring 1 foot. The mass is initially released...

    3. A mass weighing 2 pounds stretches a spring 1 foot. The mass is initially released from rest from a point 1 foot above the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is 1 numerically equal to 0.4 times the instantaneous velocity. Find the equation of motion.(25pts)

  • a mass weighing 8 pounds when attached to a spring, stretches it 6 inches.the object is...

    a mass weighing 8 pounds when attached to a spring, stretches it 6 inches.the object is originally at rest and is released 6 inches below equilibrium find the equation of motion if the surronding medium offers a damping force that is numerically equal to 5 times the instantaneous velocity

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT