Question

A liquid propellant engine chamber pressure=10 MPa, constant ratio of specific heats = 1.2, a characteristic...

A liquid propellant engine chamber pressure=10 MPa, constant ratio of specific heats = 1.2, a characteristic velocity =1800 m/s. The nozzle has a throat area = 0.015 m2 and an area ratio = 16. Find the mass flux through the throat

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A liquid propellant engine chamber pressure=10 MPa, constant ratio of specific heats = 1.2, a characteristic...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • SP 7. The SpaceX Super Draco reaction control thrusters employ a converging-diverging nozzle to isentropically accelerate...

    SP 7. The SpaceX Super Draco reaction control thrusters employ a converging-diverging nozzle to isentropically accelerate the flow of combusted monomethyl hydrazine/nitrogen tetroxide gases to supersonic speeds. The throat area in these engines is At = 0.0345 m2 https://internetprotocol.co/content/images/2020/01/Space-X.png a) Given that the pressure and temperature within the combustion chamber (where velocity 0) are po = 5 MPa and To = 3600 K, respectively, and that the flow exits the nozzle at an exit pressure, Pe 0.5 MPa , find...

  • A certain ideal rocket with a nozzle are ratio of 2.3 and a throat area of...

    A certain ideal rocket with a nozzle are ratio of 2.3 and a throat area of 5 sq. in. delivers gases at γ = 30 and R = 66 ft-lbf/lbm-⁰R at a chamber pressure of 300 psia and a constant chamber temperature of 5300 ⁰R against a back atmospheric pressure of 10 psia. By means of an appropriate valve arrangement, it is possible to throttle the propellant flow to the thrust chamber. Calculate and plot against pressure the following quantities...

  • 1. For an ideal rocket with a characteristic velocity of c 1220 m/s, a mass flow...

    1. For an ideal rocket with a characteristic velocity of c 1220 m/s, a mass flow rate of 73 kg/s, a thrust coefficient of 1.5 and a nozzle throat area (A0.0248 m2), compute a. The effective exhaust velocity, c b. The thrust, F c. The chamber pressure, pc d. And the specific impulse, Isp

  • Consider the flow through a rocket engine nozzle. In the combustion chamber, the gas which results...

    Consider the flow through a rocket engine nozzle. In the combustion chamber, the gas which results from the combustion of the rocket fuel and oxidizer is at a pressure and temperature of 15 atm and 2500K, respectively; the molecular weight and specific heat at constant pressure of the combustion gas are 12 kg/kmol and 4157 J/kg · K, respectively. Assume that the gas flow through the nozzle is an isentropic expansion of calorically perfect gas, with a temperature of 1350K...

  • 2. Air is steadily discharged from a large chamber in which the pressure is 500 kPa,...

    2. Air is steadily discharged from a large chamber in which the pressure is 500 kPa, the temperature is 30°C, and the velocity is effectively zero through a nozzle, as shown in Fig. 2. Assuming one dimensional isentropic flow, find: (a) if the pressure at some section of the nozzle is 80 kPa, the Mach number, temperature, and velocity at this section. (b) if the nozzle has a circular cross-section with a diameter of 12 mm at the section discussed...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 353 Inlet pressure: Pl (kPa) = 546 Inlet Velocity: V1 (m/s) = 61 Area at nozzle inlet: A1 (cm^2) = 7.24...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 360 Inlet pressure: P1 (kPa) = 583 Inlet Velocity: V1 (m/s) = 105 Area at inlet (cm^2) = 8.2 Mach number at the exit = 1.86 a) Determine...

  • 3. Diesel engine exhaust gases at 0.3 MPa pressure and 800 K pass through a nozzle, where the nozzle coefficient (c ) is 0.98, and expand to a pressure of 0.12 MPa. The hot gases enter to a simpl...

    3. Diesel engine exhaust gases at 0.3 MPa pressure and 800 K pass through a nozzle, where the nozzle coefficient (c ) is 0.98, and expand to a pressure of 0.12 MPa. The hot gases enter to a simple impulse turbine of the turbocharger unit with diameter 0.4 m, nozzle angle 12° and blade coefficient (o) of 0.99. Find: a. Ideal rate of rotation of turbine, in rpm b. The velocity of air leaving the turbine, assuming a symmetric blade...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 321 Inlet pressure: P1 (kPa) = 588 Inlet Velocity: V1 (m/s) = 97 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) 370 Inlet pressure: P1 (kPa) = 576 Inlet Velocity: V1 (m/s) - 106 Area at nozzle inlet: A1 (cm^2) = 8.32...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT