Question

A 238 g mass is connected to a light spring of force constant 2 N/m and...

A 238 g mass is connected to a light spring of force constant 2 N/m and it is free to os- cillate on a horizontal, frictionless track. The mass is displaced 8 cm from the equilibrium point and released form rest. 8 cm 2 N/m 238 g x=0 Find the period of the motion. Answer in units of s.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Consider the given data, Mass of the object, m 238 gm 0.238kg Force constant of spring. k-2N/m Displacement of mass from itsConsider the expression to calculate the time period of the motion, 2π Substitute the values in equation (3), 2π 2.898 - 2.16

Add a comment
Know the answer?
Add Answer to:
A 238 g mass is connected to a light spring of force constant 2 N/m and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 223 g block connected to a light spring with a force constant of k =...

    A 223 g block connected to a light spring with a force constant of k = 5 N/m is free to oscillate on a horizontal, frictionless surface. The block is displaced 3 cm from equilibrium and released from rest. a) Find the period of its motion. (Recall that the period, T, and frequency, f, are inverses of each other.) b) Determine the maximum acceleration of the block.

  • 51 A Block-Spring System A 320-g block connected to a light spring for which the force...

    51 A Block-Spring System A 320-g block connected to a light spring for which the force constant is 5.30 N/m is free to oscillate on a frictionless, horizontal surface. The block is displaced 5.10 cm from equilibrium and released from rest as in the figure. (A) Find the period of its motion. (B) Determine the maximum speed of the block. (C) What is the maximum acceleration of the block? (D) Express the position, velocity, and acceleration as functions of time...

  • A 0.56-kg object connected to a light spring with a force constant of 23.6 N/m oscillates...

    A 0.56-kg object connected to a light spring with a force constant of 23.6 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (d) For what value of x does the speed equal one-half the maximum speed? m

  • A 0.300-kg cart connected to a light spring for which the force constant is 18.0 N/m...

    A 0.300-kg cart connected to a light spring for which the force constant is 18.0 N/m oscillates on a frictionless, horizontal air track. Use an energy approach to respond to the questions below. (A) Calculate the maximum speed of the cart if the amplitude of the motion is 6.00 cm. (B) What is the velocity of the cart when the position is 3.00 cm?

  • A 0.64 kg mass is attached to a light spring with a force constant of 23.9...

    A 0.64 kg mass is attached to a light spring with a force constant of 23.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass _____ m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm _____ m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...

  • A 0.53 kg object connected to a light spring with a force constant of 23.2 N/m...

    A 0.53 kg object connected to a light spring with a force constant of 23.2 N/m oscillates on a frictionless horizontal surface. If the spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. _____________cm/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. ___________ cm/s (c) Determine the speed of the object when the spring is stretched 1.5 cm. _______________cm/s (d) For what value of x does...

  • A 0.52-kg object connected to a light spring with a force constant of 19.4 N/m oscillates...

    A 0.52-kg object connected to a light spring with a force constant of 19.4 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. Correct: Your answer is correct. m/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. Correct: Your answer is correct. m/s (c) Determine the speed of the object as it passes the point 1.5 cm from...

  • A 1.10 kg cart connected to a light spring for which the force constant is 22.5...

    A 1.10 kg cart connected to a light spring for which the force constant is 22.5 N/m oscillates on a frictionless, horizontal air track. When the spring attached to the cart in the example is stretched to 3 cm, it is given a push so that its velocity at that moment is 0.24 m/s away from the equilibrium position. What will be the new amplitude (in cm) of the oscillation?

  • A 0.84 kq mass is attached to a light spring with a force constant of 34.9...

    A 0.84 kq mass is attached to a light spring with a force constant of 34.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.76 kg mass is attached to a light spring with a force constant of 27.9...

    A 0.76 kg mass is attached to a light spring with a force constant of 27.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT