Question

A solid marble of mass m = 35 kg and radius r = 4 cm will...

A solid marble of mass m = 35 kg and radius r = 4 cm will roll without slipping along the loop-the-loop track shown in the figure if it is released from rest somewhere on the straight section of track. From what minimum height h above the bottom of the track must the marble be released to ensure that it does not leave the track at the top of the loop? The radius of the loop-the-loop is R = 1.05 m.

A solid marble of mass m = 35 kg and rad

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Using the floor as the reference position for computing potential energy, mechanical energy conservation leads to release Sub

Add a comment
Know the answer?
Add Answer to:
A solid marble of mass m = 35 kg and radius r = 4 cm will...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H l...

    Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H leading to a circular loop-the loop. The center of mass of the ball will move in a circle of radius R if it goes around the loop. The moment of inertia of a solid ball is Ibull--mr. (a) Find an expression for the minimum height H for which the ball barely goes around the loop, staying...

  • A small solid porcelain sphere, with a mass m and radius r, is placed on the...

    A small solid porcelain sphere, with a mass m and radius r, is placed on the inclined section of the metal track shown below, such that its lowest point is at a height h above the bottom of the loop. The sphere is then released from rest, and it rolls on the track without slipping. In your analysis, use the approximation that the radius r of the sphere is much smaller than both the radius R of the loop and...

  • A uniform solid sphere of radius r=8.60 cm starts from rest at a height h and...

    A uniform solid sphere of radius r=8.60 cm starts from rest at a height h and rolls without slipping along the loop-the-loop track of radius R=42.00 cm as shown in Figure 9-56. What is the smallest value of h for which the sphere will not leave the track at the top of the loop? (h is measured from the center of the ball at the top of the ramp to the center of the ball at the bottom of the...

  • Example2 25k A solid sphere (mass M, radius R) is released from rest at the top...

    Example2 25k A solid sphere (mass M, radius R) is released from rest at the top of an inclined plane (angle ?). There is sufficient friction between the incline and the sphere to allow it to roll without slipping. (a) Draw and FBD for the sphere. (b) Find the linear acceleration of the sphere (c) Find the magnitude of the frictional force acting on the sphere. (d) Find the minimum required coefficient of friction to keep the sphere from slipping....

  • A small solid glass sphere, with a mass m and radius r, is placed on the...

    A small solid glass sphere, with a mass m and radius r, is placed on the inclined section of the metal track shown below, such that its lowest loop. The sphere is then released from rest, and it rolls on the track without slipping. In your analysis, use the approximation that the radius radius R of the loop and the height h. (Use the following as necessary: M, R, and g for the acceleration of gravity.) Solid sphere of mass...

  • In the figure here, a solid brass ball of mass 0.298 g will roll smoothly along...

    In the figure here, a solid brass ball of mass 0.298 g will roll smoothly along a loop-the-loop track when released from rest along the straight section. The circular loop has radius R = 0.19 m, and the ball has radius r << R. (a) What is h if the ball is on the verge of leaving the track when it reaches the top of the loop? (b) If the ball is released at height h = 7R, what is...

  • Consider a solid sphere of mass m and radius r being released from a height h...

    Consider a solid sphere of mass m and radius r being released from a height h (i.e., its center of mass is initially a height h above the ground). It rolls without slipping and passes through a vertical loop of radius R. a. Use energy conservation to determine the tangential and angular velocities of the sphere when it reaches the top of the loop. b. Draw a force diagram for the sphere at the top of the loop and write...

  • A marble of mass m and radius r rolls along the looped rough track of the...

    A marble of mass m and radius r rolls along the looped rough track of the figure.(Figure 1) Ignore frictional losses. Part A What is the minimum value of the vertical height h that the marble must drop if it is to reach the highest point of the loop without leaving the track? Assume r?R. Express your answer in terms of R. Part B What is the minimum value of the vertical height h that the marble must drop if...

  • Problem 4. A solid sphere of mass m and radius r rolls without slipping along the...

    Problem 4. A solid sphere of mass m and radius r rolls without slipping along the track shown below. It starts from rest with the lowest point of the sphere at height h 3R above the bottom of the loop of radius R, much larger than r. Point P is on the track and it is R above the bottom of the loop. The moment of inertia of the ball about an axis through its center is I-2/S mr. The...

  • AP Physics C FRQ 3. A sphere of mass m and radius r is released from...

    AP Physics C FRQ 3. A sphere of mass m and radius r is released from rest at the top of a curved track of height H. The sphere travels down the curved track and around a loop of radius R. The sphere rolls without slipping during the entire motion. Point A on the loop is at height R, and point B is at the top of the loop. The rotational inertia of the sphere is 2mr2/s. Express all of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT