Question

Figure 9-56

A uniform solid sphere of radius r=8.60 cm starts from rest at a height h and rolls without slipping along the loop-the-loop track of radius R=42.00 cm as shown in Figure 9-56. What is the smallest value of h for which the sphere will not leave the track at the top of the loop? (h is measured from the center of the ball at the top of the ramp to the center of the ball at the bottom of the ramp.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

we know,
the smallest speed of any body at the top of the loop must be, v = sqrt(5*g*R)
let w is the angular speed of the sphere when it is at the top of the loop.

so, w = v/r

let m is the mass and r is radius of the sphere.
now apply conservation of energy

initial potential energy at height h = sum of potential and kinetic energy at the top of the loop

PEi = PEf + KEf

PEi = PEf + KE_linear + KE_rotational

m*g*h = m*g*(2*R) + (1/2)*m*v^2 + (1/2)*I*w^2

m*g*h = 2*m*g*R + (1/2)*m*v^2 + (1/2)*(2/5)*m*r^2*w^2

m*g*h = 2*m*g*R + (1/2)*m*v^2 + (1/5)*m*(r*w)^2

m*g*h = 2*m*g*R + (1/2)*m*v^2 + (1/5)*m*v^2

m*g*h = 2*m*g*R + (7/10)*m*v^2

m*g*h = 2*m*g*R + (7/10)*m*(5*g*R)

m*g*h = m*g*R + 3.5*m*g*R

m*g*h = 4.5*m*g*R

h = 4.5*R (or) (9/2)*R <<<<<<<<<-----------------Answer

Add a comment
Know the answer?
Add Answer to:
A uniform solid sphere of radius r=8.60 cm starts from rest at a height h and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A solid sphere of mass M and radius R starts from rest at the top of...

    A solid sphere of mass M and radius R starts from rest at the top of an inclined ramp, and rolls to the bottom.  The upper end of the ramp is h meters higher than the lower end.  (Note: The moment of inertia for a solid sphere rotating about an axis through its center is (2/5)MR2) Draw an energy bar chart & corresponding equation for this situation Symbolically, what is the linear speed of the sphere at the bottom of the ramp...

  • A uniform, solid sphere of radius 5.00 cm and mass 4.75 kg starts with a purely...

    A uniform, solid sphere of radius 5.00 cm and mass 4.75 kg starts with a purely translational speed of 1.75 m/s at the top of an inclined plane. The surface of the incline is 1.50 m long, and is tilted at an angle of 26.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2=

  • A uniform, solid sphere of radius 4.00 cm and mass 2.25 kg starts with a purely...

    A uniform, solid sphere of radius 4.00 cm and mass 2.25 kg starts with a purely translational speed of 2.25 m/s at the top of an inclined plane. The surface of the incline is 1.75 m long, and is tilted at an angle of 33.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp.

  • A uniform, solid sphere of radius 4.25 cm and mass 2.00 kg starts with a purely...

    A uniform, solid sphere of radius 4.25 cm and mass 2.00 kg starts with a purely translational speed of 1.00 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 22.0" with respect to the horizontal Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speedy at the bottom of the ramp.v2 = _______ m/s

  • A uniform, solid sphere of radius 4.00 cm and mass 4.50 kg starts with a purely...

    A uniform, solid sphere of radius 4.00 cm and mass 4.50 kg starts with a purely translational speed of 2.25 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 33.0" with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v2 at the bottom of the ramp. v2 = _______ m/s

  • A uniform, solid sphere of radius 3.75 cm and mass 1.25 kg starts with a purely...

    A uniform, solid sphere of radius 3.75 cm and mass 1.25 kg starts with a purely translational speed of 1.50 m/s at the top of an inclined plane. The surface of the incline is 1.75 m long, and is tilted at an angle of 35.0° with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v2 at the bottom of the ramp. v2 = m/s

  • A solid sphere of mass M and radius R starts from rest from the top of...

    A solid sphere of mass M and radius R starts from rest from the top of an inclined plane of height h, and rolls without slipping. Find the speed of the center of mass at the bottom of the inclined plane. (I = {MR) М. R x d u CM Radi-Rasmussen Select one: a. Egh cose 10 b Mgh d. Mgh sin 0 e v2gh • 1. Mgd n. Vigh sin e ENG

  • A uniform, solid sphere of radius 4.25 cm4.25 cm and mass 2.75 kg2.75 kg starts with...

    A uniform, solid sphere of radius 4.25 cm4.25 cm and mass 2.75 kg2.75 kg starts with a purely translational speed of 2.75 m/s2.75 m/s at the top of an inclined plane. The surface of the incline is 3.00 m3.00 m long, and is tilted at an angle of 28.0∘28.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v2v2 at the bottom of the ramp

  • A uniform, solid sphere of radius 4.00 cm and mass 2.00 kg starts with a translational...

    A uniform, solid sphere of radius 4.00 cm and mass 2.00 kg starts with a translational speed of 2.00 m/s at the top of an inclined plane that is 1.00 m long and tilted at an angle of 20.0° with the horizontal. Assume the sphere rolls without slipping down the ramp. 1) Calculate the final speed of a solid sphere. (Express your answer to three significant figures.)

  • Problem 4. A solid sphere of mass m and radius r rolls without slipping along the...

    Problem 4. A solid sphere of mass m and radius r rolls without slipping along the track shown below. It starts from rest with the lowest point of the sphere at height h 3R above the bottom of the loop of radius R, much larger than r. Point P is on the track and it is R above the bottom of the loop. The moment of inertia of the ball about an axis through its center is I-2/S mr. The...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT