Question

2. Methane at 27°C, 10 MPa and mass flow rate of 10 kg/s enters a turbine operating at a steady flow process and expands adia

0 0
Add a comment Improve this question Transcribed image text
Answer #1

NSWER. 2MPa 27 °C, lompat R = 0-8153 kJ/xgK Tor : 191.1k Pay = 4.64 MPa Cp 18-89 +0.05st (p in kolkml, Tink] Man flow rate inTom from first law of thermodynamies sve q +w dą - o Jas the proces in adiabatic) du = Guldr Heydar Sau= Jadr + s (of Poldreusing iteration method V = 2.03x10-4 m3 V2 = 8.49x10-4 mi 7225 300 Sao - (18: 3+ -5srcT + 3) 4x sex sx am ve Ove 18.89(-75)+W = sukn o (6) = -1015.789 X 625 =-634-868 KW Power dovelohed by turbine in 634-868 KW. Now ideal gas equation PV=nRT from fi

Add a comment
Know the answer?
Add Answer to:
2. Methane at 27°C, 10 MPa and mass flow rate of 10 kg/s enters a turbine...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 2. Determine if the heat is added to the system or lost from the system. 3. Plot the TV diagram showing all...

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 2. Determine if the heat is added to the system or lost from the system. 3. Plot the TV diagram showing all...

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 2. Determine if the heat is added to the system or lost from the system. 3. Plot the TV diagram showing all...

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 i/Kg.k 1. Calculate the amount of heat transfer. 12% 2. Determine if the heat is added to the system or lost from the system. 4% 3. Plot the TV diagram...

  • Problem 4. Water vapor at 6 MPa, 600 °C enters a turbine operating at steady state...

    Problem 4. Water vapor at 6 MPa, 600 °C enters a turbine operating at steady state and expands to 10 kPa. The mass flow rate is 2 kg/s, and the power developed is 2626 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Determine (a) the isentropic turbine efficiency and (b) the rate of entropy production within the turbine in kw/K.

  • Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands...

    Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 6.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat and kinetic and potential energy effects are negligible. Determine the power developed by the turbine in kW. ht 6/3 of En Help I S Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow...

  • 1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the...

    1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k - Calculate the amount of heat transfer. Determine if the heat is added to the system or lost from the system. - Plot the TV diagram showing all...

  • 1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the...

    1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k - Calculate the amount of heat transfer. Determine if the heat is added to the system or lost from the system. - Plot the TV diagram showing all...

  • 1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the...

    1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039j/Kg.k - Calculate the amount of heat transfer. Determine if the heat is added to the system or lost from the system. Plot the TV diagram showing all the states...

  • Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady...

    Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady state with a mass flow rate of 9.5 kg/s and exits at 0.1 bar and a quality of 92%. Stray heat transfer and kinetic and potential energy effects are negligible. (a) (30 points) Determine the rate of entropy production, Ocv, in kW/K. (b) (40 points) Determine the isentropic turbine efficiency, .

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT