Question

Problem 2:2* (Carnot Cycle Application) Two kilograms of air within a piston-cylinder assembly execute a Carnot power cycle w

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Carnot Cyclo mb» ε ff,ciency 영 Carnot-ouer cycle TL TH tonain to air during taothea mol 300-0.6 -So Given 60 = 2x(0.287) x(759) In 1-149ST P2 40初errmal 6S9-73 0.624157 m3 heat hamftheat inbut Qx(0.287)XC750-3の r JC 4

Add a comment
Know the answer?
Add Answer to:
Problem 2:2* (Carnot Cycle Application) Two kilograms of air within a piston-cylinder assembly execute a Carnot...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 5 (10 points) Air within a piston-cylinder assembly executes a Carnot heat pump cycle. For...

    Question 5 (10 points) Air within a piston-cylinder assembly executes a Carnot heat pump cycle. For the cycle, Th = 325 C and Tc = {TC) C. The thermal energy produced by the engine has a magnitude of 200 kJ per kg of air. The pressure at the start of the isothermal expansion is 325 kPa. Determine the magnitude of the net work input, in kJ per kg of air. Your Answer: Answer

  • One and one-half pounds of water within a piston-cylinder assembly execute a Carnot power cycle. During isothermal exp...

    One and one-half pounds of water within a piston-cylinder assembly execute a Carnot power cycle. During isothermal expansion, the water is heated at 500 degree F from saturated liquid to saturated vapor. The vapor then expands adiabatically to a temperature of 100 degree F and a quality of 70.38%. Sketch the cycle on p-v coordinates. Evaluate the heat transfer and work for each process, in Btu. Evaluate the thermal efficiency.

  • Air in a piston-cylinder assembly executes a Carnot power cycle (4 internally reversible processes, shown in...

    Air in a piston-cylinder assembly executes a Carnot power cycle (4 internally reversible processes, shown in the figure below). The isothermal expansion and compression processes occur at TH 1400 K and Tc-350 K, respectively. The pressure at the beginning and end of the isothermal compression are p4-100 kPa and pi - 500 kPa, respectively Assume the ideal gas model for the air: ai 0.717 J/g.K Mair- 28.97 g/mol kpv.air 1.4 R 8.314J /(mol K) Adiabatic Isothermal expansion Adiabatic compression Gas...

  • need help understanding and how to solve this problem? Three kilograms of air within a piston-cylinder...

    need help understanding and how to solve this problem? Three kilograms of air within a piston-cylinder assembly executes a Carnot power cycle. The isothermal expansion occurs at 700K from 1.25 bar to 0.85 bar; the air can be treated as an ideal gas. If the cycle thermal efficiency is 65%, a. (5) determine the temperature of the isothermal compression b.(5) calculate the network developed for the cycle in kj c. (10) draw the cycle on both Pv and Ts diagrams,...

  • An air-standard cycle is executed within a closed piston–cylinder system, and it consists of the following...

    An air-standard cycle is executed within a closed piston–cylinder system, and it consists of the following three processes: 1–2 V = Constant heat addition from 100 kPa and 30°C to 850 kPa 2–3 Isothermal expansion until V3 = 8.5V2 3–1 P = Constant heat rejection to the initial state Assume air has constant properties with cv = 0.718 kJ/kg·K, cp = 1.005 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4. Required information An air-standard cycle is executed within a...

  • 2. An ideal gas within a piston-cylinder assembly executes a Carnot power cycle. The isothermal compression...

    2. An ideal gas within a piston-cylinder assembly executes a Carnot power cycle. The isothermal compression occurs at 300 K from 80 kPa to 110 kPa. If the thermal efficiency is 70% determine (30 points): P a. the temperature of the isothermal expansion, in K, and b. the network developed, in kJ per kmol of gas. Jooote Nmax = 1 - - - TW TA 70%=1-300x TA = 300 kdy cokela TH TH= loook - +10 A = With I...

  • Required information An air-standard cycle is executed within a closed piston-cylinder system, and it consists of...

    Required information An air-standard cycle is executed within a closed piston-cylinder system, and it consists of the following three processes: 1-2 V Constant heat addition from 100 kPa and 34°C to 850 kPa 2-3 Isothermal expansion until V3-8.5V2 3-1 P Constant heat rejection to the initial state Assume air has constant properties with cv 0.718 kJ/kg-K, Cp 1.005 kJ/kg-K, R- 0.287 kJ/kg-K, and k-1.4 Determine the cycle thermal efficiency. The cycle thermal efficiency is 10.266

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle...

    A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle consisting of four processes in series: • Process 1-2: Constant-temperature expansion at 600 K from p1 = 0.5 MPa to p2 = 0.4 MPa. • Process 2-3: Polytropic expansion with n = 1.3 to p3 = 0.3 MPa. • Process 3-4: Constant-pressure compression to ν4 = ν1. • Process 4-1: Constant-volume heating. a) Sketch the cycle on a p-ν diagram. b) Calculate the work...

  • A piston-cylinder assembly contains air modeled as an ideal gas with a constant specific heat ratio,...

    A piston-cylinder assembly contains air modeled as an ideal gas with a constant specific heat ratio, k = 1.4. The air undergoes a power cycle consisting of four processes in series: Process 1-2: Constant-temperature expansion at 600 K from p1 = 0.5 MPa to p2 = 0.4 MPa. Process 2-3: Polutropic expansion with n = k to p3 = 0.3 MPa. Process 3-4: Constant-pressure compression to V4 = V1. Process 4-1: Constant volume heating. Sketch the cycle on a p-v...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT