Question

Part A A 2 20 kg block on a horizontal floor is attached to a horizontal spring that is initally compressed 0 0360 m. The spring has force constant 885 N/m. The coefficient of kinetic friction between the foor and the block is 0 35. The block and spring are released from rest and the block slides along the floor What is the speed of the block when it has moved a distance of 0.0100 m from its intiail position? (At this point the spring is compressed 0.0260 m ) im Previous Answers Request Answer X Incorrect Try Again; 5 attempts remaining Fio 12
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Using conservation of energy

Workdone by spring - workdone by frictional energy = change in kientic energy of system

0.5 k ( x1^2 - x2^2) - u mg d = 0.5 m v^2

0.5 * 885 * ( 0.036^2 - 0.025^2) - 0.35* 2.2* 9.8* 0.01 = 0.5 *2.2* v^2

v = 0.4487 m/s

=======

Comment in case any doubt.. Goodluck

Add a comment
Know the answer?
Add Answer to:
Part A A 2 20 kg block on a horizontal floor is attached to a horizontal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m . The spring has force constant 820 N/m . The coefficient of kinetic friction between the floor and the block is 0.41 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0140 m from its initial position? (At this...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m . The spring has force constant 830 N/m . The coefficient of kinetic friction between the floor and the block is 0.45 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0170 m from its initial position? (At this...

  • A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m . The spring has force constant 890 N/m . The coefficient of kinetic friction between the floor and the block is 0.38 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0200 m from its initial position? (At this...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0380 m . The spring has force constant 810 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0200 m from its initial position? (At this...

  • A 14 kg block on a horizontal surface is attached to a horizontal spring of spring...

    A 14 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 5.7 kN/m. The block is pulled to the right so that the spring is stretched 15 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 44 N. (a) What is the kinetic energy of the block when it has moved 3.0 cm from...

  • 10. A 0.600-kg wood block is firmly attached to a very light horizontal spring k 200...

    10. A 0.600-kg wood block is firmly attached to a very light horizontal spring k 200 N/m as shown in the figure. It is noted that the block-spring system, when compressed 5.00 cm and released, stretches out 4.00 cm beyond the equilibrium position before stopping and turning back. What is the coefficient of kinetic friction between the block and the table?

  • A block of mass 2.0 kg is attached to a horizontal spring that has a force...

    A block of mass 2.0 kg is attached to a horizontal spring that has a force constant of 1200 N/m as shown in the figure. The spring is compressed 10.0 cm and is then released from rest as in the figure. (a) Calculate the speed of the block as it passes through the equilibrium position x=0 if the surface is frictionless. (b) Calculate the speed of the block as it passes through the equilibrium position if a constant friction force...

  • A block of mass 1.8 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below

    A block of mass 1.8 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. (a) A constant friction force of 3.4 N retards the block's motion from the moment it is released. How much is the spring compressed when the speed of the block is a maximum. (b) What is the maximum speed?

  • A 2.6 kg block is attached to a horizontal rope that exerts a variable force F_x=(20−5x)...

    A 2.6 kg block is attached to a horizontal rope that exerts a variable force F_x=(20−5x) Newtons where x is in m. The coefficient of kinetic friction between the block and the floor is 0.25. Initially the block is at rest at x= 0 m. What is the block's speed when it has been pulled to x = 2.2 m?

  • A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring...

    A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring constant is k = 600 N/m. The block is pulled to the right until it is a distance of 0.08 m from the unstrained position and released from rest. What is the kinetic energy of the block when it is 0.06 m from the unstrained position?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT