Question

A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is...

A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m . The spring has force constant 890 N/m . The coefficient of kinetic friction between the floor and the block is 0.38 . The block and spring are released from rest and the block slides along the floor.

What is the speed of the block when it has moved a distance of 0.0200 m from its initial position? (At this point the spring is compressed 0.0200 m .)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m . The spring has force constant 820 N/m . The coefficient of kinetic friction between the floor and the block is 0.41 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0140 m from its initial position? (At this...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0380 m . The spring has force constant 810 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0200 m from its initial position? (At this...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m . The spring has force constant 830 N/m . The coefficient of kinetic friction between the floor and the block is 0.45 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0170 m from its initial position? (At this...

  • Part A A 2 20 kg block on a horizontal floor is attached to a horizontal...

    Part A A 2 20 kg block on a horizontal floor is attached to a horizontal spring that is initally compressed 0 0360 m. The spring has force constant 885 N/m. The coefficient of kinetic friction between the foor and the block is 0 35. The block and spring are released from rest and the block slides along the floor What is the speed of the block when it has moved a distance of 0.0100 m from its intiail position?...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant...

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 520 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 21° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.16. In the initial position, where the spring is compressed by a distance of d = 0.14 m, the mass is at...

  • A 14 kg block on a horizontal surface is attached to a horizontal spring of spring...

    A 14 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 5.7 kN/m. The block is pulled to the right so that the spring is stretched 15 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 44 N. (a) What is the kinetic energy of the block when it has moved 3.0 cm from...

  • As shown in the figure below, a 2.25-kg block is released from rest on a ramp of height h.

    As shown in the figure below, a 2.25-kg block is released from rest on a ramp of height h. When the block is released, it slides without friction to the bottom of the ramp, and then continues across a surface that is frictionless except for a rough patch of width 15.0 cm that has a coefficient of kinetic friction μk = 0.520. Find h such that the block's speed after crossing the rough patch is 4.20 m/s. An object with a...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • In the figure below, a 4.0 kg block is accelerated from rest by a compressed spring...

    In the figure below, a 4.0 kg block is accelerated from rest by a compressed spring of spring constant 600 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction uk= 0.30.The frictional force stops the block in the distance of D = 8.0 m. -- No friction a) Find the increase in the thermal energy of the block-floor system b) What is the original compression...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT