Question

A 25-kg block slides on a flat, frictionless surface with a speed of 6.0 m/s. It...

A 25-kg block slides on a flat, frictionless surface with a speed of 6.0 m/s. It slides into a horizontal spring having a spring constant of 140 N/m. What is the maximum distance (in meters) that the spring will be compressed?

Show all work Please!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution: v = 6 m/s K=140N/m Initial as ng VO ang and final PE=IK 2 This all can be done by conservation of energy as i frict

Add a comment
Know the answer?
Add Answer to:
A 25-kg block slides on a flat, frictionless surface with a speed of 6.0 m/s. It...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass of 1 kg and initial speed 10 m/s slides across a horizontal frictionless surface...

    A mass of 1 kg and initial speed 10 m/s slides across a horizontal frictionless surface and hits a spring of force constant 200 N/m. How much will the spring be compressed from its relaxed length when the block will be at rest momentarily?

  • A 2.9 kg block slides with a speed of 1.1 m/s on a frictionless, horizontal surface...

    A 2.9 kg block slides with a speed of 1.1 m/s on a frictionless, horizontal surface until it encounters a spring. (a) If the block compresses the spring 5.2 cm before coming to rest, what is the force constant of the spring? (b) What initial speed should the block have if it is to compress the spring by 1.3 cm?

  • (S points) A o.5 kg block slides along a horizontal frictionless surface at 2.0 m/s. It...

    (S points) A o.5 kg block slides along a horizontal frictionless surface at 2.0 m/s. It is brought to rest by compressing a ve 16. sed long spring of spring constant 800 N/m. How far does the spring get compressed (in cm)? 17. (5 points) A block is released from rest at point P. h2 50 m high, and slides along the frictionless track shown. What is its speed at pointō匹=40 m high? h1 h2 ground level

  • A 0.505-kg block slides on a frictionless horizontal surface with a speed of 1.18 m>s. The...

    A 0.505-kg block slides on a frictionless horizontal surface with a speed of 1.18 m>s. The block encounters an unstretched spring and compresses it 23.2 cm before coming to rest. (b) For what length of time is the block in contact with the spring before it comes to rest? (c) If the force constant of the spring is increased, does the time required to stop the block increase, decrease, or stay the same? Explain.

  • Question 28 (1 point) The horizontal surface on which the block slides is frictionless. The speed...

    Question 28 (1 point) The horizontal surface on which the block slides is frictionless. The speed of the block before it touches the spring is 6.0 m/s. How fast is the block moving at the instant the spring has been compressed 15 cm? k= 2.0 kN/m 1 20 kg 14 m/s 4.4 m/s 3.7 m/s 4.9 m/s 5.4 m/s

  • In the figure, a 5.00-kg block is moving at 5 m/s along a horizontal frictionless surface...

    In the figure, a 5.00-kg block is moving at 5 m/s along a horizontal frictionless surface toward an ideal massless spring that is attached to a wall. After the block collides with the spring, the spring is compressed a maximum distance of 0.68 m. What is the speed of the block in m/s when it has moved so that the spring is compressed to a distance of 0.495 m? 5.00 kg 5.00 m/s

  • A 3 kg block slides from the top of a 3.4 m high frictionless incline. At...

    A 3 kg block slides from the top of a 3.4 m high frictionless incline. At the bottom of the incline the block encounters a spring with a spring constant of 400 N/m on a horizontal surface. How far is the spring compressed? The correct answer is 0.71 meters but I need the worked out solution!

  • Problem 3 A 6-kg block is moving on a horizontal frictionless floor with a speed of...

    Problem 3 A 6-kg block is moving on a horizontal frictionless floor with a speed of 4 m/s when a constant horizontal force F is applied to the block. The speed of the block increases to 10 m/s within a distance of 5 m. Find (a) initial and final kinetic energy, and (b) the applied force F Problem 4 A0.50 kg block sliding on a horizontal frictionless surface with a speed of 2.5 m/s strikes a light spring that has...

  • A 1.05 kg block slides on a frictionless, horizontal surface with an speed of 1.45 m/sec....

    A 1.05 kg block slides on a frictionless, horizontal surface with an speed of 1.45 m/sec. The block encounters an unstretched spring with a spring constant of 285 N/m. 1)What is the initial kinetic energy of the block before it hits the spring? KE0 = 2)What is the potential energy of the mass and spring system when the spring is at its point of maximum compression? Umax = 3)How far is the spring compress before the block comes to rest?...

  • IP A 2.8 kg block slides with a speed of 2.1 m/s on a frictionless horizontal...

    IP A 2.8 kg block slides with a speed of 2.1 m/s on a frictionless horizontal surface until it encounters a spring. Part A If the block compresses the spring 5.6 cm before coning to rest, what is the force constant of the spring? Express your answer using two significant figures. N/m Submit Request Answer Part B What initial speed should the block have to compress the spring by 1.4 cm? Express your answer using two significant figures. UE m/s...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT