Question

I need the formula four component reliability when strength is exponentially distributed and stress is normally distributed. please drive this formula and show the steps so I may apply it.

77% ■ 1 1 :13 rent -Area@ど(e -C.1%).jo.忘jo) et(iseise)t


here are the formulas for exponential strength denoted by G and normal stress denoted by s.

stvength Stress 2 乙π G 100

what is the formula for component reliability for when the strength function is exponentially distributed and the stress function has a normal distribution. the answer should be equal to Rc=.6096( this is what our professor gave us to check our work)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 2 Fs

f_{g}(s)=\lambda_{s} e^{-\lambda_{s} s}

we keep it is to derive the equation

R=\int_{0}^{\infty} F_{S}\left[\int_{0}^{S} f_{g}(s) d s\right] d s

it yields

2 exp 1-2 R=

2 exp

  2 2

=1-\phi\left[-\frac{N_{\mathrm{S}}}{\sigma_{\mathrm{S}}}\right]-\frac{1}{\sigma_{\mathrm{S}} \sqrt{2 \pi}} \mathrm{T}

here

\mathrm{T}=\int_{0}^{\infty} \exp \left[-\frac{1}{2 \sigma_{\mathrm{S}}^{2}}\left[\left(\mathrm{s}-N_{\mathrm{S}}+\lambda \sigma_{\mathrm{S}}^{2}\right)^{2}+2 N_{\mathrm{S}} \sigma_{\mathrm{S}}^{2} \lambda-\lambda^{2} \sigma_{\mathrm{S}}^{4}\right]\right] \mathrm{ds}

For convenience, we let

t=\left(s-N_{S}+\lambda \sigma_{S}^{2}\right) / \sigma_{S}then ơSdt ds :

The reliability assumes the form

R=1-\Phi\left[-\frac{N_{S}}{\sigma_{S}}\right]-\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \exp \left[-\frac{t^{2}}{2}\right]\cdot \exp \left[-\frac{1}{2}\left(2 N_{\mathrm{s}} \lambda-\lambda^{2} \sigma_{\mathrm{S}}^{2}\right)\right] \mathrm{d} \mathrm{t}

where\: \: \: \: \: x=\frac{N_{s}-\lambda \sigma_{s}^{2}}{\sigma_{s}}

R=1-\Phi\left[-\frac{N_{S}}{\sigma_{S}}\right]-\exp \left[-\frac{1}{2}\left(2 N_{\mathrm{s}}{\lambda} s\right.\right.--\lambda_{s}^{2} \sigma_{S}^{2} ) ]\left[1-\Phi\left[-\frac{^{N} s^{-\lambda} s^{\sigma_{S}^{2}}}{\sigma_{S}}\right]\right]

putting values in equation

R=1-0-\exp [-\frac{1}{2}\left(2 N_{\mathrm{s}}{\lambda} s.\right.--\lambda_{s}^{2} \sigma_{S}^{2} ) ]\left[1-0\right]

R=1-\exp [-\frac{1}{2}\left(2 N_{\mathrm{s}}{\lambda} s.\right.-\lambda_{s}^{2} \sigma_{S}^{2} ) ]

R_{c}=1-R

R_{c}=\exp [-\frac{1}{2}\left(2 N_{\mathrm{s}}{\lambda} s.\right.-\lambda_{s}^{2} \sigma_{S}^{2} ) ]

putting values

R,, 0.60957

IF YOU LIKED THE ANSWER PLEASE PROVIDE POSITIVE FEEDBACK

Add a comment
Answer #1

2 2 Fs

f_{g}(s)=\lambda_{s} e^{-\lambda_{s} s}

we keep it is to derive the equation

R=\int_{0}^{\infty} F_{S}\left[\int_{0}^{S} f_{g}(s) d s\right] d s

it yields

2 exp 1-2 R=

2 exp

  2 2

=1-\phi\left[-\frac{N_{\mathrm{S}}}{\sigma_{\mathrm{S}}}\right]-\frac{1}{\sigma_{\mathrm{S}} \sqrt{2 \pi}} \mathrm{T}

here

\mathrm{T}=\int_{0}^{\infty} \exp \left[-\frac{1}{2 \sigma_{\mathrm{S}}^{2}}\left[\left(\mathrm{s}-N_{\mathrm{S}}+\lambda \sigma_{\mathrm{S}}^{2}\right)^{2}+2 N_{\mathrm{S}} \sigma_{\mathrm{S}}^{2} \lambda-\lambda^{2} \sigma_{\mathrm{S}}^{4}\right]\right] \mathrm{ds}

For convenience, we let

t=\left(s-N_{S}+\lambda \sigma_{S}^{2}\right) / \sigma_{S}then ơSdt ds :

The reliability assumes the form

R=1-\Phi\left[-\frac{N_{S}}{\sigma_{S}}\right]-\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \exp \left[-\frac{t^{2}}{2}\right]\cdot \exp \left[-\frac{1}{2}\left(2 N_{\mathrm{s}} \lambda-\lambda^{2} \sigma_{\mathrm{S}}^{2}\right)\right] \mathrm{d} \mathrm{t}

where\: \: \: \: \: x=\frac{N_{s}-\lambda \sigma_{s}^{2}}{\sigma_{s}}

R=1-\Phi\left[-\frac{N_{S}}{\sigma_{S}}\right]-\exp \left[-\frac{1}{2}\left(2 N_{\mathrm{s}}{\lambda} s\right.\right.--\lambda_{s}^{2} \sigma_{S}^{2} ) ]\left[1-\Phi\left[-\frac{^{N} s^{-\lambda} s^{\sigma_{S}^{2}}}{\sigma_{S}}\right]\right]

putting values in equation

R=1-0-\exp [-\frac{1}{2}\left(2 N_{\mathrm{s}}{\lambda} s.\right.--\lambda_{s}^{2} \sigma_{S}^{2} ) ]\left[1-0\right]

R=1-\exp [-\frac{1}{2}\left(2 N_{\mathrm{s}}{\lambda} s.\right.-\lambda_{s}^{2} \sigma_{S}^{2} ) ]

R_{c}=1-R

R_{c}=\exp [-\frac{1}{2}\left(2 N_{\mathrm{s}}{\lambda} s.\right.-\lambda_{s}^{2} \sigma_{S}^{2} ) ]

putting values

R,, 0.60957

IF YOU LIKED THE ANSWER PLEASE PROVIDE POSITIVE FEEDBACK

Add a comment
Know the answer?
Add Answer to:
I need the formula four component reliability when strength is exponentially distributed and stress is normally...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT