Question

A long, solid, conducting cylinder has a radius of 2.0 cm. The electric field at the...

A long, solid, conducting cylinder has a radius of 2.0 cm. The electric field at the surface of the cylinder is 780 N/C, directed radially outward. Let A, B, and C be points that are 1.1 cm, 2.0 cm, and 8.2 cm, respectively, from the central axis of the cylinder. What are (a) the magnitude of the electric field at C and the electric potential differences (b)VB – VC and (c)VA – VB?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A long, solid, conducting cylinder has a radius of 2.0 cm. The electric field at the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A solid conducting sphere of radius 2.00 cm has a charge of 9.20 μC. A conducting...

    A solid conducting sphere of radius 2.00 cm has a charge of 9.20 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a charge of-1.92 μC. Find the electric field at the following radii from the center of this charge configuration (a) r-1.00 cm magnitude 0 direction N/C The magnitude is zero. (b) r-3.00 cm magnitude 9.2e7 direction radially outward (c) r-4.50 cm magnitude 0 direction...

  • A long, non conducting, solid cylinder of radius 4.7 cm has a nonuniform volume charge density...

    A long, non conducting, solid cylinder of radius 4.7 cm has a nonuniform volume charge density ? = Ar2, a function of the radial distance r from the cylinder axis. A = 2.4 µC/m5. (a) What is the magnitude of the electric field at a radial distance of 3.7 cm from the axis of the cylinder? (b) What is the magnitude of the electric field at a radial distance of 5.7 cm from the axis of the cylinder?

  • A solid conducting sphere of radius 3.2 cm has a charge of 29 nC distributed uniformly...

    A solid conducting sphere of radius 3.2 cm has a charge of 29 nC distributed uniformly over its surface. Let A be a point 1.3 cm from the center of the sphere, S be a point on the surface of the sphere, and B be a point 6.6 cm from the center of the sphere. What are the electric potential differences (a)VS – VB and (b)VA – VB?

  • You have a hollow conducting sphere of radius 5 cm. the electric field at 10 cm...

    You have a hollow conducting sphere of radius 5 cm. the electric field at 10 cm measured radially outward from the center of the sphere is 8.99x1046 2. N/C. a. b. c. d. What is the charge of the sphere? What is the surface charge density of the sphere? What is the electric field at a distance r-1 cm from the center of the sphere? What is the potential at the center of the sphere? R-5 cm R-10 cm

  • An infinitely long solid insulating cylinder of radius a = 5.5 cm is positioned with its...

    An infinitely long solid insulating cylinder of radius a = 5.5 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density rho = 25 mu C/m^3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.4 cm, and outer radius c = 17.4 cm. The conducting shell has a linear charge density lambda = -0.42 mu C/m. 1) What is E_y(R), the y-component of...

  • A 5-m long hollow insulating cylinder of inner radius, a 10 cm, and outer radius, b...

    A 5-m long hollow insulating cylinder of inner radius, a 10 cm, and outer radius, b 15 cm, carries a constant volume charge density 2.5x 108/munifomly distributed throughout its entire volume. Determine the magnitude of the electric field at the following radial distances measured from the symmetry axis of the cylinder (a) r=6cm; (b) = 12 cm; (c) r=18 cm. [(a) ?; (b) 51.8 N/C, radially outward; (c) 98N/C, radially outward

  • A solid conducting sphere of radius 2.00 cm has a charge 11.00 µC. A conducting spherical...

    A solid conducting sphere of radius 2.00 cm has a charge 11.00 µC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge of -1.00 µC. (Take radially outward as the positive direction.) (a) Find the electric field at r = 1.00 cm from the center of this charge configuration. MN/C (b) Find the electric field at r = 3.00 cm from the center of...

  • A solid conducting sphere of radius 2.00 cm has a charge of 8.84 ?C. A conducting...

    A solid conducting sphere of radius 2.00 cm has a charge of 8.84 ?C. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a charge of ?2.50 ?C. Find the electric field at the following radii from the center of this charge configuration. (a)    r = 1.00 cm magnitude     N/C direction     ---Select---radially inwardradially outwardThe magnitude is zero. (b)    r = 3.00 cm magnitude     N/C direction     ---Select---radially inwardradially outwardThe magnitude...

  • A solid conducting sphere o radius 2.00 cm has a charge 15.00 μC A conducting spherical...

    A solid conducting sphere o radius 2.00 cm has a charge 15.00 μC A conducting spherical shell o inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge 0 μ Take radially outward as the positive direction. Find the electric field at the following distances from the center of this charge con g ation HC 5.00 (a) r 1.00 cm (b)r 3.00 cm (c) r - 4.50 cm (d)r 7.00...

  • A solid metal sphere of radius 2.00 cm lies at the centre of a hollow metal...

     A solid metal sphere of radius 2.00 cm lies at the centre of a hollow metal sphere of inner radius 4.00 cm and outer radius 6.00 cm. The system is in electrostatic equilibrium. Point A lies 3.00 cm from the centre. The electric field at point A points radially outward and has a magnitude of 1.00x104 N/C. Point B lies 8.00 cm from the centre. The electric field at point B points radially inward and has a magnitude of 1.00...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT