Question

In this problem, we will try to illustrate the following: a waggon is linked to a wall with a spring and a damper. The positi

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The Simulink model uses signal connections, which define how data flows from one block to another.

The Simscape model uses physical connections, which permit a bidirectional flow of energy between components. Physical connections make it possible to add further stages to the mass-spring-damper simply by using copy and paste. Input/output connections require rederiving and reimplementing the equations.

The initial deflection for the spring is 0 meter. This is shown in the block annotations for the Spring and one of the Integrator blocks.

Simulink Model Simscape Model V_sl V SC 1/m -14 Mass V 1/Mass xD Damper W5 Spring b Damping k Stiffness Mass-Spring-Damper in

Entering State-Space Models into MATLAB

Now we will demonstrate how to enter the equations derived above into an m-file for MATLAB. Let's assign the following numerical values to each of the variables.

m                   mass                                    5.0 kg
k                   spring constant                         2.0 N/m
b                   damping constant                        1.0 Ns/m
F                   input force                             2.0 N

Create a new m-file and enter the following commands.

m = 5;
k = 2;
b = 1;
F = 2;

A = [0 1; -k/m -b/m];
B = [0 1/m]';
C = [1 0];
D = [0];

sys = ss(A,B,C,D)
sys =
 
  A = 
         x1    x2
   x1     0     1
   x2    -0.4  -0.2
 
  B = 
       u1
   x1   0
   x2   0.2
 
  C = 
       x1  x2
   y1   1   0
 
  D = 
       u1
   y1   0
 
Continuous-time state-space model.

The Laplace transform for this system assuming zero initial conditions is

Position of Mass Simscape Simulink 0.8 0.6 0.4 0.2 Position (m) um -0.2 -0.4 -0.6 -0.8 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (

Add a comment
Know the answer?
Add Answer to:
In this problem, we will try to illustrate the following: a waggon is linked to a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 63 Figure P6.3 shows a mass-damper system (no stiffness, Problem 2.3). Displacement x is measured...

    63 Figure P6.3 shows a mass-damper system (no stiffness, Problem 2.3). Displacement x is measured from an equilibrium position where the damper is at the "neutral" position. The external force () is a short-duration pulse function: f(!)-5N for 0SS002 s, and f,() = 0 for t > 0.02 s. The system parameters are mass m-0.5kg and viscous friction coefficient b 3 N-s/m and the system is initially at rest. Usc Simulink to determine the system response and plot displacement xit)...

  • Solve the question in Matlab and please show Matlab code Consider a double Spring-Mass-Damper System as...

    Solve the question in Matlab and please show Matlab code Consider a double Spring-Mass-Damper System as shown in the figure below: U >F(t) A. Create a Simulink model to simulate the dynamics of the above system for the following parameter values: F(t) = Step input force of magnitude 5 N ml = 7 kg, b1 = 3 Nsec/m, kl = 4 N/m m2 = 3 kg, b2 = 1 Nsec/m, k2= 2 N/m B. Submit a snapshot of the Simulink...

  • SOLVE NUMERICALLY USING EULERS METHOD

    The motion of a damped spring-mass system (Fig. P25.16)  is described by the following ordinary differential equation: m d2x dt2 1 c dx dt 1 kx 5 0 where x 5 displacement from equilibrium position (m), t 5 time  (s), m 5 20-kg mass, and c 5 the damping coeffi cient (N ? s/m).  The damping coeffi cient c takes on three values of 5 (underdamped), 40 (critically damped), and 200 (overdamped). The  spring constant k 5 20 N/m. The...

  • Chapter 15, Problem 014 Your answer is partially correct. Try again A simple harmonic oscillator consists...

    Chapter 15, Problem 014 Your answer is partially correct. Try again A simple harmonic oscillator consists of a block of mass 3.20 kg attached to a spring of spring constant 140 N/m, when t-1.00 s, the position and velocity of the block are χ 0.195 m and v = 3.940 m/s. (a) What is the amplitude of the oscillations? what were the (b) position and (c) velocity of the block at t (a) Number To.626777 (b) Numbe (c) Number 0...

  • Problem Set A Problem 6. (20%) A ordinary differential equation for a mass-damper-spring system is following....

    Problem Set A Problem 6. (20%) A ordinary differential equation for a mass-damper-spring system is following. The mass m 1, damping coetfic e initial position y(o) O, and the initial velocity i constant k 3 and force 10, all are in appropriate units. Th 1, spring zero, within the time range of O to 20 unit of time, use Matlab find the solution of function y(t)? Hint: you need to convert the 2nd order ODE into two 1st order ODEs....

  • A second order mechanical system of a mass connected to a spring and a damper is subjected to a s...

    A second order mechanical system of a mass connected to a spring and a damper is subjected to a sinusoidal input force mx+cx + kx = A sin(at) The mass is m-5 kg, the damping constant is c = 1 N-sec/m, the spring stiffness is 2 N/m, and the amplitude of the input force is A- 3 N. For this system give explicit numerical values for the damping factor 5 and the un-damped natural frequency Using the given formulas for...

  • Problem 1. Consider the following mass, spring, and damper system. Let the force F be the...

    Problem 1. Consider the following mass, spring, and damper system. Let the force F be the input and the position x be the output. M-1 kg b- 10 N s/m k 20 N/nm F = 1 N when t>=0 PART UNIT FEEDBACK CONTROL SYSTEM 5) Construct a unit feedback control for the mass-spring-damper system 6) Draw the block diagram of the unit feedback control system 7) Find the Transfer Function of the closed-loop (CL) system 8) Find and plot the...

  • a can be skipped Consider the following second-order ODE representing a spring-mass-damper system for zero initial...

    a can be skipped Consider the following second-order ODE representing a spring-mass-damper system for zero initial conditions (forced response): 2x + 2x + x=u, x(0) = 0, *(0) = 0 where u is the Unit Step Function (of magnitude 1). a. Use MATLAB to obtain an analytical solution x(t) for the differential equation, using the Laplace Transforms approach (do not use DSOLVE). Obtain the analytical expression for x(t). Also obtain a plot of .x(t) (for a simulation of 14 seconds)...

  • .matlab Objective: This activity has the purpose of helping students to to use either Simulink or VisSim to simulate the system behavior based on its Block Diagram representation and plot its resp...

    .matlab Objective: This activity has the purpose of helping students to to use either Simulink or VisSim to simulate the system behavior based on its Block Diagram representation and plot its response. Student Instructions: The following spring-mass-damper system has no external forcing, that is u(0)-0. At time t- 0 it has an initial condition for the spring, which it is distended by one unit: y(0)-1. The system will respond to this initial condition (zero-input-response) until it reaches equilibrium. 0)1initial condition...

  • 4. Consider the mechanical system shown below with a spring with stiffness, k (N/m), in parallel...

    4. Consider the mechanical system shown below with a spring with stiffness, k (N/m), in parallel with a viscous damper with coefficient, h (Nós/m) and an externally applied force, Fexi(t) (N). u(t) a. Find the equation that relates the applied force, Fext(t) and the displacement, u(t). b. If the spring component has a stiffness of k = 75 N/m, the damper component has coefficient h = 50 N s/m and the externally applied force is a constant 4.5 N applied...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT