Question

QUESTION 2 Given that a control system has a forward path of G(s) and negative unity feedback and unit- step input is applied

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(ANS) GCS) 5CSt4) RCS) Ca) K CC5) K b) CCS) SC5H) RCS) K SCstH) СС) RIS)K 6 CC5) RCS) 2& Con &Con 2 ton 27. toleane band setling hne ECon 2secd) GCS) H(5) k SC5t4) fon sep nput t GCS) HCS) kp kp 505t4) 50 Stcady state erTO tkp Slep ponse was dnauon by matlah (e)

MATLAB code :

clc;
clear all;
sys=tf([6],[1 4 6]);
step(sys)

Step Response 1.2 0.8 0.6 0.4 0.2 0 0 1 3.5 4 0.5 1.5 2 2.5 Time (seconds) AmplitudecC5) RC5) S45+k 32 1 K. k. to siabilty ko Routh Hurcaita cdenia using (1

plzzz rate it.............

Add a comment
Know the answer?
Add Answer to:
QUESTION 2 Given that a control system has a forward path of G(s) and negative unity...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with ...

    A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G (s) =...

  • A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-...

    A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input; b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G)2)(s +5) is operating with...

  • actions in the forward path of a unity-feedback closed-loop system (CLS) are given E(s) = K + 25 , G(s)-8 (a) Plot t...

    actions in the forward path of a unity-feedback closed-loop system (CLS) are given E(s) = K + 25 , G(s)-8 (a) Plot the root locus of the CLS for K20. (b) Determine K so that the CLS has a pair of complex poles with ( = 0.6 ) Find the unit sterp sponse of the CL.S with K as abhowe actions in the forward path of a unity-feedback closed-loop system (CLS) are given E(s) = K + 25 , G(s)-8...

  • 2. Consider a unity feedback control system with G(s), below, in the forward path. G(s) s...

    2. Consider a unity feedback control system with G(s), below, in the forward path. G(s) s (s +2) (a) Design K such that the system operates at 5% overshoot (b) Add a compensator to reduce the settling time of part (a) by a factor of 5. (c) Add another compensator to increase K, of part (b) by a factor of 5.

  • 1. A unity feedback system with its forward transfer function G(s) - K(s+a)/s(s+B) is to be...

    1. A unity feedback system with its forward transfer function G(s) - K(s+a)/s(s+B) is to be designed to meet the following requirements: (1) the steady-state error for a unit ramp input equals to 0.1 and (2) the closed-loop poles will be located at -1 + j1. Find K, a, and B in order to meet the specifications. (12 points) 2. Given a unity feedback system with its forward transfer function G(s) shown below: s" (s +a) Find the values of...

  • Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed...

    Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed-loop step response that has 20.5% overshoot. G)-(+8)6 + 25) G(s) (a) Design a PD compens ator to decrease the settling time of the closed-loop system by a factor of four Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed-loop step response that has 20.5% overshoot. G)-(+8)6 + 25) G(s) (a) Design a PD compens ator to decrease...

  • A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating wi...

    A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the steady-state error for a unit step input b) Design a PI control to reduce the steady-state error to zero without affecting its transient response c) Evaluate the steady-state error and overshoot for a unit step input to your compensated system A unity feedback system with the forward transfer function G(s) is operating with...

  • 1. a. Plot the root loci for the unity-feedback system whose feed-forward transfer function is: G(s)...

    1. a. Plot the root loci for the unity-feedback system whose feed-forward transfer function is: G(s) = - s(s? + 4s + 8) If the value of K is set 8, where are the closed loop poles located? (5 Points) Hint: Non-dominant pole is an integer. b. Outline the procedure for design of a lag compensator (on the forward path) that cuts down the rise and settling times to half of the dominant second order system in 1. a. (3...

  • 1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in...

    1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in the forward path. (a) Design a proportional controller that yields a stable system with percent overshoot less that 5% for the step input (b) Find settling time and peak time of the closed-loop system designed in part (a); (c) Design a PD compensator that reduces the settling time computed in (b) by a factor of 4 while keeping the percent overshoot less that 5%...

  • 3. For the feedback control system shown in Figure Q3 below, the forward-path transfer function given...

    3. For the feedback control system shown in Figure Q3 below, the forward-path transfer function given by G(s) and the sensor transfer function is given by H(s). R(s) C(s) G(s) H(s) Figure Q3 It is known that G(s) -- K(+20) S(+5) H(s) = and K is the proportional gain. (S+10) i. Determine the closed-loop transfer function and hence the characteristic equation of the system. [6 marks] ii. Using the Routh-Hurwitz criterion, determine the stability of the closed-loop system. Determine the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT