Question

+ The Rydberg Equation An astrophysicist working at an observatory is interested in finding clouds of hydrogen in the galaxy. Usually hydrogen is detected by looking for the Balmer series of spectral lines in the visible spectrum. Unfortunately, the instrument that detects hydrogen emission spectra at this particular observatory is not working very well and only detects spectra in the infrared region of electromagnetic radiation. Therefore the astrophysicist decides to check for hydrogen by looking at the Paschen series, which produces spectral lines in the infrared part of the spectrum. The Paschen series describes the wavelengths of light emitted by the decay of electrons from higher orbits to the n 3 level. Part A What wavelength A should the astrophysicist look for to detect a transition of an electron from the n 5 to the n Express your answer with the appropriate units. You did not open hints for this part. ANSWER 3 level?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
+ The Rydberg Equation An astrophysicist working at an observatory is interested in finding clouds of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Use the following information to answer the next question. The following diagram represents the emission lines...

    Use the following information to answer the next question. The following diagram represents the emission lines that are produced for the Balmer Series of hydrogen. Each line is produced as an electron makes a transition from a higher Bohr energy level to n-2. Balmer Series Spectral Line Wavelengths IT I 300 nm 400 nm 500 nm 600 mm 700 nm 8. The regions of the electromagnetic spectrum into which the lines of the Balmer Series of hydrogen are classified are...

  • Ch 27 HW (Part 2) The Hydrogen Spectrum « previous 5 of 19 next » SubmitMy...

    Ch 27 HW (Part 2) The Hydrogen Spectrum « previous 5 of 19 next » SubmitMy AnswersGive Up Part B What is the wavelength of the line corresponding to n=5 in the Balmer series? Express your answer in nanometers to three significant figures. SubmitMy AnswersGive Up Part C What is the smallest wavelength λmin in the Balmer's series? Express your answer in nanometers to three significant figures. Hints SubmitMy AnswersGive Up Part D What is the largest wavelength λmax in...

  • this kinda of a long question, but all parts are connected. so, please explain ! The...

    this kinda of a long question, but all parts are connected. so, please explain ! The first quantitative description of the hydrogen spectrum was given by Johann Balmer, a Swiss school teacher, in 1885. By trial and error, he found that the correct wavelength ? of each line observed in the hydrogen spectrum was given by 1?=R(122?1n2), where R is a constant, later called the Rydberg constant, and n may have the integer values 3, 4, 5, .... If ?...

  • 4 Item 4 Learning Goal: To calculate the wavelengths of the lines in the hydrogen emission...

    4 Item 4 Learning Goal: To calculate the wavelengths of the lines in the hydrogen emission spectrum Atoms give off light when heated or otherwise excited! The light emitted by excited atoms consists of only a few wavelengths, rather than a full rainbow of colors. When this light is passed through a prism, the result is a series of discrete lines separated by blank areas. The visible lines in the series of the hydrogen spectrum are caused by emission of...

  • 4. An intense emission line for a new element is observed at a wavelength of 325...

    4. An intense emission line for a new element is observed at a wavelength of 325 nm. What is the frequency of this ight? Frequency Tries 0/2 Submit Answer 5. An intense emission line for a new element is observed at a wavelength of 700 nm. What is the energy of a single photon of this light Energy Tries 0/2 Submit Ans 6. For the line spectra experiment you analyzed the Baimer series to determine n and nu in the...

  • please answer all 5, thanks:) attributed to stray light or impurities in the discharge lube.) Data...

    please answer all 5, thanks:) attributed to stray light or impurities in the discharge lube.) Data Analysis 1. Using the scale position reading for the hydroxen snectrum and the equation generated from your calibration curve, calculate the wavelengths (in A) for each of the four lines in the hydrogen spectrum. Compare these calculated values with the reported values. Look up the four lines that are visible in the atomic spectrum of hydrogen (Be sure to provide a reference or URL)....

  • Electronically excited hydrogen emits in the visible part of the spectrum in a series of lines...

    Electronically excited hydrogen emits in the visible part of the spectrum in a series of lines known as the Balmer series. Each of these transitions terminates in the n=2 level of hydrogen. What is the energy and wavelength and upper state quantum number for the first four of these transitions starting with the longest wavelength emission?

  • .019 1. When Johann Balmer found his famous series for hydrogen in wavelengths in the visible...

    .019 1. When Johann Balmer found his famous series for hydrogen in wavelengths in the visible and near ultraviolet regions from series lie in that region. On the basis of the entries in Table 11.3 and me diagram, what common characteristic do the lines in the Balmer sein Print Preview ous series for hydrogen in 1886, he was limited experimentally to car ultraviolet regions from 250 nm to 700 nm, so all the lines in his entries in Table 11.3...

  • Use the following information to answer the next question/ The following diagram represents the emission lines...

    Use the following information to answer the next question/ The following diagram represents the emission lines that are produced for the Balmer Series of hydrogen. Each line is produced as an electron makes a transition from a higher Bohr energy level to n-2. Balmer Series Spectral Line Wavelengths I I 300 mm 400 nm 500 nm 600 nm 700 nm The electromagnetic radiation represented by emission line I in the diagram has ai frequency than the electromagnetic radiation represented by...

  • When an electron of an excited hydrogen atom descends, from an initial energy level (ni) to...

    When an electron of an excited hydrogen atom descends, from an initial energy level (ni) to a lower (nf), characteristic electromagnetic radiation is emitted. The Bohr model of the H-atom allows the calculation of ?E for any pair of energy levels. ?E is related to the wavelength (?) of the radiation according to Einstein's equation ( ?E = [(hc)/?]). Distinct series of spectral lines have been classified according to nf: Lyman series:nf=1 (91<?<123 nm; near-UV). Balmer series:nf=2 (365<?<658 nm; visible)....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT