Question

An objects distance from a converging lens is 5.00 times the focal length (a) Determine the location of the image. Express t

0 0
Add a comment Improve this question Transcribed image text
Answer #1

f d. di ナ u ne d o こす-0.2 invented -dih Negahve Valu hi real

Add a comment
Know the answer?
Add Answer to:
An object's distance from a converging lens is 5.00 times the focal length (a) Determine the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1.) An object is placed in front of a diverging lens with a focal length of...

    1.) An object is placed in front of a diverging lens with a focal length of 17.7 cm. For each object distance, find the image distance and the magnification. Describe each image. (a) 35.4 cm location _____cm magnification _____ nature real virtual upright inverted (b) 17.7 cm location _____  cm magnification _____ nature real virtual upright inverted (c) 8.85 cm location _____ cm magnification _____ nature real virtual upright inverted 2.) An object is placed in front of a converging lens...

  • A converging lens has a focal length of 46.0 cm. If an object is at a...

    A converging lens has a focal length of 46.0 cm. If an object is at a distance of 13.1 cm from the lens, determine the location d of the image, the magnification m, and the type of image, if it exists. d = -18.4 cm, m = 1.4, virtual and upright d = +18.4 cm, m = -1.4, real and inverted image does not exist d = 56.2 cm, m = -0.222, real and inverted d = -23.0 cm, m...

  • a) Suppose an object is placed 7.50cm from a converging lens with a 5cm focal length....

    a) Suppose an object is placed 7.50cm from a converging lens with a 5cm focal length. Use ray tracing to get the image and measure image distance. Describe the image: (upright or inverted, real or virtual, bigger or smaller). b) Use the lens equations to calculate the location of the image and its magnification. Describe the image: (upright or inverted, real or virtual, bigger or smaller).

  • An object is a distance of 6 64f from a converging lens, where is the lens's...

    An object is a distance of 6 64f from a converging lens, where is the lens's focal length. (Include the sign of the value in your answers) (a) What is the location of the image formed by the lens? d_i = f (b) Is the image real or virtual real virtual (c) What is the magnification of the image? (d) Is the image upright or inverted? upright inverted

  • An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length o...

    An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length of 30.5 cm. A diverging lens with a focal length of-20.0 cm is placed 110 cm to the right of the converging lens. (a) Determine the position of the final image. distance location to the right , of the diverging lens (b) Determine the magnification of the final image 128.4 Your response differs from the correct answer by more than...

  • A converging lens with a focal length of 4.9 cm is located 20.9 cm to the...

    A converging lens with a focal length of 4.9 cm is located 20.9 cm to the left of a diverging lens having a focal length of -11.0 cm. If an object is located 9.9 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. a) Where is the image located as measured from the diverging lens? b) What is the magnification? c) Also determine, with respect to the original object...

  • (a) An object is placed 7.5cm from a converging lens having a 5cm focal length. Use...

    (a) An object is placed 7.5cm from a converging lens having a 5cm focal length. Use ray tracing to get the image and measure image distance. Describe the image from your drawing (upright/inverted, real/virtual, bigger/smaller). Please use ruler to get as accurate as you could (b) Use the lens equations to calculate the location of the image and its magnification. Describe the image from your calculation (upright/inverted, real/virtual, bigger/smaller).

  • Consider a converging lens whose focal length is 6.95 cm. An object is placed on the...

    Consider a converging lens whose focal length is 6.95 cm. An object is placed on the axis of the lens at a distance of 13.5 cm from the lens. How far is the object's image from the lens? image distance:   cm If it can be determined, is the image real or virtual? cannot be determined real virtual If it can be determined, is the image upright or inverted with respect to the object? cannot be determined inverted upright

  • A converging lens with a focal length of 4.2 cm is located 20.7 cm to the...

    A converging lens with a focal length of 4.2 cm is located 20.7 cm to the left of a diverging lens having a focal length of -11.5 cm. If an object is located 9.2 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? Submit Answer Tries 0/10 What is the magnification? Submit Answer Tries 0/10 Also determine, with...

  • A converging lens with a focal length of 6.0 cm is located 24.0 cm to the...

    A converging lens with a focal length of 6.0 cm is located 24.0 cm to the left of a diverging lens having a focal length of -13.0 cm. If an object is located 11.0 cm to the left of the converging lens, locate and describ completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? 63.81 cm Submit Answer Incorrect. Tries 3/10 Previous Tries What is the magnification? Submit Answer...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT