Question

A student on a piano stool rotates freely with an angular speed of 3.11 rev/s. The student holds a 1.37-kg mass in each outst

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Iten that |- given 3 w 3.11 reva m 1.37 Kg m r 0,787 m 12 I = wa . 5.35 kg.m2 3.48 rev/s a) pet d in the final position posit2 2 T d = ܢܐ ay (2mo?t. I) a we (2nd ? HI) 3.112X1.37 x 0.787+5:35 ) = (3-48)(2x 1.94d?+5.25) 27.086 (2.7402 + 5.35) 7. 7833

Add a comment
Know the answer?
Add Answer to:
A student on a piano stool rotates freely with an angular speed of 3.11 rev/s. The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A student on a piano stool rotates freely with an angular speed of 3.05 rev/s ....

    A student on a piano stool rotates freely with an angular speed of 3.05 rev/s . The student holds a 1.35 kg mass in each outstretched arm, 0.789 m from the axis of rotation. The combined moment of inertia of the student and the stool, ignoring the two masses, is 5.43 kg⋅m2 , a value that remains constant. a) As the student pulls his arms inward, his angular speed increases to 3.73 rev/s . How far are the masses from...

  • student on a piano stool rotates freely with an angular speed of 2.85 rev/s . The...

    student on a piano stool rotates freely with an angular speed of 2.85 rev/s . The student holds a 1.25 kg mass in each outstretched arm, 0.739 m from the axis of rotation. The combined moment of inertia of the student and the stool, ignoring the two masses, is 5.53 kg⋅m2 , a value that remains constant. As the student pulls his arms inward, his angular speed increases to 3.41 rev/s . How far are the masses from the axis...

  • A student sits on a freely rotating stool holding two weights, each of which has a...

    A student sits on a freely rotating stool holding two weights, each of which has a mass of 2.84kg. When his arms are extended horizontally, the weights are 0.970m from the axis of rotation and he rotates with an angular speed of 0.608rad/s. The moment of inertia of the student plus stool is 4.85kgm^2 and is assumed to be constant. The student pulls the weights inward horizontally to a position 0.200m from the rotation axis. Find the new angular speed...

  • 3. A student sits on a freely rotating stool holding two dumbbells, each of mass 2.92...

    3. A student sits on a freely rotating stool holding two dumbbells, each of mass 2.92 kg. When his arms are extended horizontally, the dumbbells are 0.95 m from the axis of rotation and the student rotates with an angular speed of 0.754 rad/s. The moment of inertia of the student plus stool is 2.69 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.305 m from the rotation axis....

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 2.93 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 2.93 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.97 m from the axis of rotation and the student rotates with an angular speed of rad/s. The moment of inertia of the student plus stool is 2.75 kg m^2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.291 m from the...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 2.98 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 2.98 kg . When his arms are extended horizontally , the dumbbells are 0.96 m from the axis of rotation and the student rotates with an angular speed of 0.747 rad/s. The moment of inertia of the student plus stool is 2.62 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.305 m from the rotation...

  • A student sits on a freely rotating stool holding two weights, each of mass 4 kg.. When his arms are extended horizonta...

    A student sits on a freely rotating stool holding two weights, each of mass 4 kg.. When his arms are extended horizontally, the weights are 1.1 m from the axis of rotation and he rotates with an angular speed of 0.9 rad/s. The moment of inertia of the student plus stool is 3.0 kg-m2 and is assumed to be constant. The student pulls the weights inward horizontally to a position 0.4 m from the rotation axis. Find the new angular...

  • A student sits on a freely rotating stool holding two weights, each of mass 3.08 kg....

    A student sits on a freely rotating stool holding two weights, each of mass 3.08 kg. When his arms are extended horizontally, the weights are 0.91 m from the axis of rotation and he rotates with an angular speed of 0.755 rad/s. The moment of inertia of the student plus stool is 3.08 kg·m2 and is assumed to be constant. The student pulls the weights inward horizontally to a position 0.294 m from the rotation axis. (a) Find the new...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 3.08 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 3.08 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 0.96 m from the axis of rotation and the student rotates with an angular speed of 0.755 rad/s. The moment of inertia of the student plus stool is 2.53 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.304 m...

  • A student sits on a freely rotating stool holding two dumbbells, each of mass 2.99 kg...

    A student sits on a freely rotating stool holding two dumbbells, each of mass 2.99 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 1.09 m from the axis of rotation and the student rotates with an angular speed of 0.752 rad/s. The moment of inertia of the student plus stool is 2.80 kg . m and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.293 m...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT