Question

p/Challenge%20HW%202.pdf (1) In a Youngs double slit experiment a screen is placed 85.0 cm from two slits that have a spacing of 0.300 mm. The slits are illuminated with coherent light with a wavelength of 540 nm. (a) What is the distance between the first and third-order dark fringes? (b) What is the distance between the first-order bright fringe and the second order dark fringe?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
In a Young's double slit experiment a screen is placed 85.0 cm from two slits that...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A Young's double slit experiment has the screen placed 2.6 m from the double slits where...

    A Young's double slit experiment has the screen placed 2.6 m from the double slits where the spacing between the two slits is 0.03 mm. 16) The angle that locates the second-order bright fringe is 2.0degree. Find the wavelength of the light? 17) Find the distance y on the screen between the central bright fringe and the second-order bright fringe.

  • In Young's double slit experiment, the position of the bright and dark fringes depends on the...

    In Young's double slit experiment, the position of the bright and dark fringes depends on the distance between the slits, the distance from the slits to the screen and the wavelength of the light. a. How far do the slits need to be from the screen for the first dark fringe to be at y = 1.6 cm if the slits are 0.025 mm apart and the wavelength is 540 nm? b. Using the same slits and the distance found...

  • 1( A) In a Young's double-slit experiment, a set of parallel slits with a separation of...

    1( A) In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wavelength of 576 nm and the interference pattern observed on a screen 3.50 m from the slits. What is the difference in path lengths from the two slits to the location of a third order bright fringe on the screen? 1(B) In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102...

  • (6) With the aid of an appropriate diagram, show that for Young's double slit experiment, y...

    (6) With the aid of an appropriate diagram, show that for Young's double slit experiment, y = 2. D/a, where 2 is the wavelength of the source, a is the slit separation, D is the distance between the slits and the screen, and y is the separation between the central bright fringe and the first order fringe. (c) In Young's double slit experiment, the slit spacing was 0.56 mm and the distance across the four-fringe spacing was 3.6 mm when...

  • In a Young's double-slit experiment, a set of parallel slits with a separation of 0.144 mm...

    In a Young's double-slit experiment, a set of parallel slits with a separation of 0.144 mm is illuminated by light having a wavelength of 590 nm and the interference pattern observed on a screen 3.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a third order bright fringe on the screen? um (b) What is the difference in path lengths from the two slits to the location of...

  • In a Young's double slit experiment, if the separation between the two slits is 0.050 mm...

    In a Young's double slit experiment, if the separation between the two slits is 0.050 mm and the distance from the slits to a screen is 2.5 m, find the spacing between the first-order and second-order bright fringes for light with wavelength of 600 nm. Correct answer is 3cm but I'm not sure how. Can somebody show all work to get this step? Thank you so much.

  • A double-slit interference experiment is performed with two very narrow slits separated by 0.19 mm. The...

    A double-slit interference experiment is performed with two very narrow slits separated by 0.19 mm. The experiment uses red light with a wavelength of 700 nm and projects the interference pattern onto a screen 5.0 m away from the slits. (a) What is the distance between two nearby bright fringes on the screen? (b) What is the distance between two nearby dark fringes on the screen? Assume these fringes are all near θ = 0. A Young's double-slit interference experiment...

  • In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a...

    In a double-slit experiment, the slits are illuminated by a monochromatic, coherent light source having a wavelength of 697 nm. An interference pattern is observed on the screen. The distance between the screen and the double-slit is 1.67 m and the distance between the two slits is 0.104 mm. A light wave propogates from each slit to the screen. What is the path length difference between the distance traveled by the waves for the fifth-order maximum (bright fringe) on the...

  • In a Young's double-slit experiment, a set of parallel slits with a separation of 0.134 mm...

    In a Young's double-slit experiment, a set of parallel slits with a separation of 0.134 mm is illuminated by light having a wavelength of 600 nm and the interference pattern observed on a screen 3.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen? μm (b) What is the difference in path lengths from the two slits to the location of...

  • In a Young's double-slit experiment, a set of parallel slits with a separation of 0.132 mm...

    In a Young's double-slit experiment, a set of parallel slits with a separation of 0.132 mm is illuminated by light having a wavelength of 566 nm and the interference pattern observed on a screen 4.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a fourth order bright fringe on the screen? μm (b) What is the difference in path lengths from the two slits to the location of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT