Question

Air enters the compressor of a gas turbine at 1 bar, 20°C with a volumetric flow ies of 90%. The plant incorporates a regeneraar of 75% effectiveness. determine: s. The pressure ratio across the compressor is 10. The turbine inlet is 1427°C and the turbine and compressor each have isentropic temperatu Using the air-standard Brayton cycle as the model for this system. a.) b) c.) the net work output, MW the back work ratio the cycles thermal efficiency pthe temperature of exhaust gas leaving the regenerator dthe cele efind the total flow exergy saved by use of the regenerator (ie. the difference in exergy of the exhaust gas with vs. without the regenerator) in MW (ignore kinetic energy effects)- comment on this value

a,b,c

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
a,b,c Air enters the compressor of a gas turbine at 1 bar, 20°C with a volumetric...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of...

    Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 100 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 20, and the maximum cycle temperature is 2100 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. For a regenerator effectiveness of 86%, determine: (a) the net power developed, in MW. (b) the rate of heat addition in the combustor, in MW. (c)...

  • Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of...

    Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 20 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 20, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. For a regenerator effectiveness of 86%, determine: (a) the net power developed, in MW. (b) the rate of heat addition in the combustor, in MW. (c)...

  • Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300...

    Air enters the compressor of a cold air-standard Brayton cycle with regeneration at 100 kPa, 300 K, with a volume flow rate of 5 m3/s. The compressor pressure ratio is 8, and the turbine inlet temperature is 1400 K. The turbine and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For the air, k = 1.4 and the ambient temperature is T0 = 300 K. -Determine the thermal efficiency of the cycle. -determine the back...

  • Thermodynamics 2: STARTING FROM QS 2) 1) In an ideal Brayton cycle air enters the compressor...

    Thermodynamics 2: STARTING FROM QS 2) 1) In an ideal Brayton cycle air enters the compressor at T = 300K and P = 1 bar with a volumetric flow rate = 20 m3/s. Air enters the turbine at P = 10 bar and T = 1800K. Find: a) The thermal efficiency b) The backwork ratio c) The net power generation in MW 2) For the same states above consider a cycle where the isentropic efficiency of the compressor and turbine...

  • 2. Air enters the compressor of a regenerative gas turbine engine at 310 K and 100...

    2. Air enters the compressor of a regenerative gas turbine engine at 310 K and 100 kPa, where it is compressed to 900 kPa and 650 K. The regenerator has an effectiveness of 80%and the air enters the turbine at 1400 K. For a turbine isentropic efficiency of 90%, , then: (a) Sketch the T-s diagram of the cycle. (b) Determine the amount of heat transfer in the regenerator (c) Calculate the thermal efficiency of the cycle (d) Determine the...

  • The refrigerant gas which is air, enters the compressor of a Brayton refrigeration cycle at 101...

    The refrigerant gas which is air, enters the compressor of a Brayton refrigeration cycle at 101 kPa, 280 K. If the compressor pressure ratio is 5 and the turbine inlet temperature is 330 K. The compressor has an isentropic efficiency of 70% and the turbine has an isentropic efficiency of 80%. Using air table rather than constant-specific-heat theory, determine (a) the net work input per unit mass of air flow, (b) the refrigeration capacity, in kJ/kg, (c) the coefficient of...

  • Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12...

    Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12 and a mass flow rate of 5.0 kg/s. Air enters the compressor at 1 bar, 290 K. The maximum cycle temperature is 1600 K. For the compressor, the isentropic efficiency is 85%, and for the turbine the isentropic efficiency is 90%. Using an air-standard analysis with air as ideal gas with constant specific heats, calculate: a) the volumetric flow rate of air entering the...

  • Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60...

    Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 17.5, and the maximum cycle temperature is 2100 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. Determine: (a) the net power developed, in kW. (b) the rate of heat addition in the combustor, in kW. (c) the percent thermal efficiency of the cycle.

  • (i) In a gas turbine plant, air enters the compressor at 150 C and it is...

    (i) In a gas turbine plant, air enters the compressor at 150 C and it is compressed through a pressure ratio of 4 with isentropic efficiency of 85%. The air-fuel ratio is 80 and the calofific value of fuel is 42000kJ/kg. The turbine inlet air temperature is 1000 K and the isentropic efficiency of the turbine is 82%. Calculate the overall efficiency and air intake for à power output of 260 kW. Take the mass of fuel inG account. PSG...

  • In a gas turbine engine, the compressor takes in air at a temperature of 15°C, pressure...

    In a gas turbine engine, the compressor takes in air at a temperature of 15°C, pressure of 100 kPa, and a volumetric flow rate of 5 m3 /s and compresses it to four times the initial pressure with an isentropic efficiency of 82%. The air then passes through a heat exchanger heated by the turbine exhaust before reaching the combustion chamber. In the heat exchanger 78% of the available heat is given to the air. The maximum temperature after constant...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT