Question

The particle of mass m in the infinite square well (of width a) starts out of the left half of the well, and is (at 1-0) equally likely to be found at any point in that region, what is the initial wave function Ψ(0)? Assume it is real, do not forget to normalize it.


0 0
Add a comment Improve this question Transcribed image text
Answer #1

Probability of finding the particle is same at any point in the left part of the region. So the probability density is a constant in the left part of the region.Hence wave function is

\Psi(x,0)=B \text{ for } [0\leq x\leq \frac{a}{2}] and 0 elsewhere.

On normalization we get

\int_0^\frac{a}{2} |B|^2=1\\ \implies B=\sqrt{\frac{2}{a}}.

So

wave function is

\Psi(x,0)=\sqrt{\frac{2}{a}} \text{ for } [0\leq x\leq \frac{a}{2}] and 0 elsewhere.

Add a comment
Know the answer?
Add Answer to:
The particle of mass m in the infinite square well (of width a) starts out of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. A particle of mass m in the infinite square well of width a (located at...

    2. A particle of mass m in the infinite square well of width a (located at 0 SSa) has as its initial wave function a mixture of two stationary states: v(x,0)Avi(x) +2s (x). (a) Find the probability density of finding the particle at the center of the well, as a function of time. (b) Find the average momentum of the particle at time t.

  • 2. A particle of mass m in the infinite square well of width a at time...

    2. A particle of mass m in the infinite square well of width a at time 1 - 0 has wave function that is an equal weight mixture of the two lowest n= 1,2 energy stationary states: (x,0) - C[4,(x)+42(x)] (a) Normalize the wave function. Hints: 1. Exploit the orthonormality of W, 2. Recall that if a wave function is normalized at t = 0, it stays normalized. (b) Find '(x, t) and (x,1)1at a later time 1>0. Express Y*...

  • 5) A particle of mass m is in the ground state of the infinite square well...

    5) A particle of mass m is in the ground state of the infinite square well 0 < x < a At t-0 the right hand wall suddenly moves to x = 2a, doubling the size of the well. Assume that this expansion happens on a time scale so fast that the initial wave function (at t0+) is the same as just before the expansion (at t-0-) (This is called the "sudden" approximation.) a) What is the probability that a...

  • please explain all, thanks! 4. (60 pts) A particle in an infinite square well of width...

    please explain all, thanks! 4. (60 pts) A particle in an infinite square well of width L has an initial wave function (x,t = 0) = Ax(L - x)2, OSX SL a) Find y(x, t) fort > 0. You first have to normalize the wave function. Hint: this is best expressed an infinite series: show that the wave function coefficients are on = * 31% (12 – n?)(1-(-1)") → (n = 87315 (12 - nºre?); n odd. b) Which energy...

  • A NON stationary state A particle of mass m is in an infinite square well potential of width L, a...

    A NON stationary state A particle of mass m is in an infinite square well potential of width L, as in McIntyre's section 5.4. Suppose we have an initial state vector lv(t -0) results from Mclntrye without re-deriving them, and you may use a computer for your math as long as you include your code in your solution A(3E1) 4iE2)). You may use E. (4 pts) Use a computer to plot this probability density at 4 times: t 0, t2...

  • 1. A particle in an infinite square well has an initial wave function Alsin sin 4 0 < x < L other...

    help on all a), b), and c) please!! 1. A particle in an infinite square well has an initial wave function Alsin sin 4 0 < x < L otherwise s(x, t = 0) 0 (a) Find A so that the wavefunction is normalized. (b) Find '(z,t). (c) Find the expectation value(E) of the energy of ψ(x,t = 0). You may use the result mx n 2 0 1. A particle in an infinite square well has an initial wave...

  • 6. (a) Consider the infinite square well again. Let the width of the well be a...

    6. (a) Consider the infinite square well again. Let the width of the well be a and the particle mass be m. Find an expression for the probability that a particle in the state, vi will be found in the region a/4 <x<3a/4. (b) Repeat part (a) for the nth eigenstate, yn, for arbitrary n. Show that the answer reduces to the classical value of 2 as n 00.

  • An electron in a one-dimensional infinite potential well of width L is found to have the...

    An electron in a one-dimensional infinite potential well of width L is found to have the normalized wave function ψ(x)- sin(2 r ). (a) What is the probability of finding the electron within the interval from x=010 x = L/2 ? (b) At what position or positions is the electron most likely to be found? In other words, find the value(s) of x where the probability of finding the particle is the greatest?

  • 1) Consider a particle with mass m confined to a one-dimensional infinite square well of length...

    1) Consider a particle with mass m confined to a one-dimensional infinite square well of length L. a) Using the time-independent Schrödinger equation, write down the wavefunction for the particle inside the well. b) Using the values of the wavefunction at the boundaries of the well, find the allowed values of the wavevector k. c) What are the allowed energy states En for the particle in this well? d) Normalize the wavefunction

  • A particle in the infinite square well has as its initial wave function an even mixture...

    A particle in the infinite square well has as its initial wave function an even mixture of the first two stationary states: psi(x, 0) = A[psi_1 (x) + psi_2(x)]. Normalize psi(x, 0) (that is, find A). Find psi (x) and |psi (x, )|^2. Express the latter as a sinusoidal function of time. To simplify the result, let omega = pi^2 h/2ma^2. Compute < x >? Compute < p >? If you measured the energy of this particle, what values might...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT